

M A D H A E N G I N E E R I N G C O L L E G E
(A Christian Minority Institution)

KUNDRATHUR, CHENNAI – 600 069

Electrical Machines Lab – II Manual

 Name :

 Subject :

 Roll No. :

 Semester : Year:

CONTENTS

Sl.

No.
Name of the Experiment

Page

No.

1 Load Test on Single Phase Induction Motor

2 Load Test on Three Phase Squirrel Cage Induction Motor

3 Regulation of Alternator by Synchronous Impedance (or) EMF Method

4 Regulation of Alternator by Ampere-Turn (or) MMF Method

5 No Load & Blocked Rotor Test on Single Phase Induction Motor

6 Load Test on Three Phase Slip Ring Induction Motor

7 V and inverted V curves of Synchronous motor

8 Separation of No Load losses of 3Φ Induction motor

9
No Load & Blocked Rotor Test on three phase squirrel cage Induction

motor – Circle Diagram

10 Study of Induction motor Starters

1. Load Test on Single Phase Induction Motor

Aim:

To conduct load test on single-phase induction motor and to draw its performance

characteristics

Apparatus required:

S. No. Apparatus Name Type / Rating Quantity

1 Ammeter (0 - 10A) MI 1

2 Voltmeter (0 - 300V) MI 1

3 Wattmeter 300 V / 10A, UPF 1

4 1ϕ Auto Transformer (0-270) V 1

5 Tachometer Analog 1

Precautions:

(1) All the switches should be kept open initially

(2) The motor should be started and stopped without any load on the brake drum.

(3) Brake drum should be cooled with water during the entire test.

Theory:

 Single-phase induction motor is not a self-starting one. To over come this draw

back and make the motor self-starting, it is temporarily converted into two-phase motor

during starting period. For this purpose an extra winding known as starting winding is

added. One capacitor C and one centrifugal switch S are connected in series with the

starting winding. The purpose of the capacitor is to provide the phase difference

between the two currents (starting winding current and running winding current). The

purpose of the centrifugal switch is to disconnect the starting winding from the supply,

once the motor reaches 70 to 80 % of its rated speed. The currents (IS and IR) produce a

revolving flux and hence make the motor self-starting.

Procedure:

 The connections are given as shown in the circuit diagram. The DPST switch is

closed. The motor is started using DOL (Direct On Line) starter. The input voltage is

adjusted to rated value with the help of single phase auto transformer. Now the motor

runs at a speed closure to the synchronous speed. The no-load readings of ammeter,

voltmeter, wattmeter and speed of the motor are noted. The load on the brake drum is

increased in suitable steps and the corresponding readings are noted.

Graphs:

(1) Output power Vs Torque

Vs Speed

Vs Efficiency

(2) Slip Vs Torque

Tabulation and Readings:

Voltage

V volts

Current

I amps

Spring balance Speed

N rpm

Torque

N-m

Input

Pi watts

Output

Pm watts



%

% slip

s

Power

factor S1 kg S2 kg

Model Calculations: (3rd set of readings)

Circumference of brake drum 2**R = ------ m

Radius of brake drum R = -----/ 2* m

(1) Torque T = (s1~s2)*9.81*R N-m

(2) Input power Pi = (Wattmeter reading) x M.F (Multiplication Factor) watts

(3) Output power Pm = 2**N*T / 60 watts

(4) Efficiency  = (Pm / Pi) x 100 %

(5) % Slip s = (NS - N) / NS x100 NS = 1500 rpm

(6) Power factor = Input power (Pi) / V I

Result:

 Thus, the load test on single-phase induction motor is conducted and its

performance characteristics are drawn.

2. Load Test on Three Phase Squirrel Cage Induction Motor

Aim:

 To conduct the load test on three phase squirrel cage induction motor and to draw

its performance characteristics.

Apparatus Required:

S. No. Apparatus Type / Rating Quantity

1 Ammeter (0 - 10A) MI 1

2 Voltmeter (0 - 600V) MI 1

3 Wattmeter 600V / 10A, UPF 2

4 Tachometer Analog 1

5 Connecting Wires --- As Required

Precautions:

(1) All the switches are kept open initially.

(2) The motor should be started and stopped without any load on the

 Brake drum.

 (3) The brake drum should be cooled with water during the entire test.

Theory:

 The induction motors are basically AC motors. i.e. they need an alternating

voltage for their operation. They can operate on either single phase or three phase as

supply, however the single phase induction motors find very limited area of application.

Almost 85% of industrial motors are three phase induction motors. Depending on the

type of rotor, the induction motors are classified into two types, (i) slip ring induction

motor (ii) squirrel cage induction motors.

 The three phase stator winding of induction motor is connected to the three phase

AC supply. Due to AC voltage applied, current stars flowing in the stator conductors.

Due to the three phase stator current, a rotating magnetic field of constant amplitude and

rotating at a constant speed is set up in the air gap between stator and rotor. The rotating

magnetic field rotates at a speed called as synchronous speed (Ns)

The synchronous speed is given by

 p

f
N s

120


 Where

 f - Stator Supply Frequency,

 P - Number of Poles

This rotating magnetic field (RMF) interacts with the rotor and produces rotation.

Procedure:

 The connections are given as shown in the circuit diagram. The TPST switch is

closed. The motor is started using DOL (Direct On Line) starter. Now, the motor runs at

a speed closure to the synchronous speed. The no-load readings of ammeter, voltmeter,

wattmeter and speed of the motor are noted. The load on the brake drum is increased in

suitable steps and the corresponding readings are noted.

Graphs:

(1) Output power Vs Torque

Vs Speed

Vs Efficiency

Vs Line Current

(3) Slip Vs Torque

Tabulation and Readings:

Line

Voltage

VL volts

Line

Ct. IL

Amps

Spring balance

readings

Speed

N

rpm

Wattmeter

readings

Torque

in

N-m

Input

Power

Pi W

Output

Pm

watts



%

%

slip

% s

Power

Factor

Cos ϕ S1 kg S2 kg W1 W2

Model Calculations: (3rd set of readings)

Circumference of brake drum 2**R = ------ m

Radius of brake drum R = ----- / 2* m

(1) Torque T = (s1~s2)*9.81*R N-m

(2) Input power Pi = W1 + W2 watts

(3) Output power Pm = 2**N*T / 60 watts

(4) Efficiency  = Pm / Pi x 100 %

(5) % Slip s = (NS – N)/NS x100 NS = 1500 rpm

(6) Power factor = Input power / 3 VLIL

Result:

 Thus, the load test on three-phase squirrel cage induction motor is conducted and

its performance characteristics are drawn.

3. Regulation of Alternator by Synchronous Impedance (or) EMF Method

Aim:

To determine the regulation of a three phase alternator by synchronous impedance
method.

Apparatus required:

S. No. Apparatus Type / Rating Quantity

1 Ammeter (0 - 10 A) MI 1

2 Ammeter (0 - 2 A) MI 1

3 Voltmeter (0 - 600V) MI 1

4 Rheostat 250 , 1.5 A 1

5 Rheostat 400 , 1 A 1

6 Tachometer Analog 1

7 Connecting Wires --- As Required

Precautions:

(1) All the switches are kept open initially.

(2) The motor field rheostat should be kept at minimum position at the

 time of starting and stopping.

(3) Alternator field rheostat should be kept at maximum position at the

 time of starting and stopping.

Theory:

 The voltage regulation of an alternator is defined as the change in terminal

voltage from no-load to the load concerned as a percentage of the rated terminal voltage

when the field excitation and speed remains constant.

 % regulation = (E0 -V) / V x 100

 where

 E0 - Terminal voltage on no-load

 V - Terminal voltage on load

 This method requires the following characteristics

(1) Open circuit characteristics

(2) Short circuit characteristics

(3) Armature resistance

Armature resistance can be found by using either multi meter or by voltmeter-

ammeter method. In the EMF method, the armature reaction is treated along with

leakage reactance. But in the MMF method, leakage reactance is treated as an additional

armature reaction.

Procedure:

(1) Open circuit test:

The connections are given as shown in the circuit diagram. The DPST

switch is closed and the motor is started using 3 point starter. The speed of the

motor is adjusted to rated speed by varying the motor field rheostat. The

generator field DPST switch is closed. For various values of excitation current

(Field current), the induced EMF is noted.

(2) Short circuit test:

The connections are given as shown in the circuit diagram. The DPST

switch is closed and the motor is started using 3 point starter. The speed of the

motor is adjusted to rated speed by varying the motor field rheostat. Now, the

generator field DPST switch and TPST switch are closed. The field current is

increased till the ammeter reads rated current. The field current and Short circuit

current are noted and the motor alternator set is disconnected from the supply.

O.C. Test:

Sl. No. Field current
If amps

Line voltage
VL volts

Phase voltage

Vph = VL/3

1

2

3

4

5

6

7

8

9

S.C. Test:

Field current
If amps

Short circuit current
Isc amps

Tabulation:

Sl.

No.

Power factor

angle in degrees

Power

factor

Induced EMF

EO volts

%

regulation

 Leading p.f.

1 30 0.866

2 45 0.707

3 60 0.5

 Lagging p.f.

1 30 0.866

2 45 0.707

3 60 0.5

Model Calculations:

 Synchronous impedance ZS = Open circuit voltage / Short circuit current

 = E1 / I1 Ω

 Ra = ---- Ω (using multimeter)

 XS = √ ZS
2
 - Ra

2 Ω

 For lagging power factor,

 EO = √ (V cos Ф + I Ra)2 + (V sin Ф + I Xs)2

 % reg = (EO -V) / V x 100

 For leading power factor,

 EO = √ (V cos Ф + I Ra)2 + (V sin Ф - I Xs)2

 % reg = (EO -V) / V x 100

 For unity power factor,

 EO = √ (V cos Ф + I Ra)2 + (I Xs)2

 % reg = (EO -V) / V x 100

Result:

 Thus the regulation of alternator is predetermined by synchronous impedance

(EMF) method.

4. Regulation of Alternator by Ampere -Turn (or) MMF Method

Aim:

To determine the regulation of a three phase alternator by Ampere-turn method.

Apparatus required:

S. No. Apparatus Type / Rating Quantity

1 Ammeter (0 - 10 A) MI 1

2 Ammeter (0 - 2 A) MI 1

3 Voltmeter (0 - 600V) MI 1

4 Rheostat 250 , 1.5 A 1

5 Rheostat 400 , 1 A 1

6 Tachometer Analog 1

7 Connecting Wires --- As Required

Precautions:

(1) All the switches are kept open initially.

(2) The motor field rheostat should be kept at minimum position at the

 time of starting and stopping.

(3) Alternator field rheostat should be kept at maximum position at the

time of starting and stopping.

Theory:

 To determine the voltage regulation of an alternator by Ampere-turn method, it is

necessary to perform open circuit test and short circuit test. The open circuit test is

conducted by allowing the alternator to run on no-load at rated speed. The terminal

voltage of the alternator on no-load is measured at various values of excitation current.

The graph drawn between no-load voltage along Y-axis and field current along X-axis

gives the open circuit characteristics of the alternator.

 The short circuit test is conducted on the alternator at its rated speed. The output

terminals are short-circuited using one ammeter and the excitation current is increased

till the ammeter reads rated current. The graph is drawn between the short circuit current

along Y-axis and the field current along X-axis.

Procedure:

(1) Open circuit test:

The connections are given as shown in the circuit diagram. The DPST

switch is closed and the motor is started using 3 point starter. The speed of the

motor is adjusted to rated speed by varying the motor field rheostat. The

generator field DPST is closed. For various values of excitation current (Field

current), the induced EMF is noted.

(2) Short circuit test:

The connections are given as shown in the circuit diagram. The DPST

switch is closed and the motor is started using 3 point starter. The speed of the

motor is adjusted to rated speed by varying the motor field rheostat. Now, the

generator field DPST switch and TPST switch are closed. The field current is

increased till the ammeter reads rated current. The field current and short circuit

current are noted and the motor alternator set is disconnected from the supply.

O.C. Test:

Sl. No.
Field current

If amps
Line voltage

VL volts

Phase voltage

Vph = VL/3

1

2

3

4

5

6

7

S.C. Test:

Field current

If amps

Short circuit current

Isc amps

Tabulation:

Sl.

No.

Power factor

angle in degrees

Power

factor

Induced EMF

EO volts

%

regulation

 Leading p.f.

1 30 0.866

2 45 0.707

3 60 0.5

 Lagging p.f.

1 30 0.866

2 45 0.707

3 60 0.5

Model Calculations:

 % regulation = (E0 -V) / V x 100

 E0 - Terminal voltage on no-load

 V - Terminal voltage on load

Result:

 Thus the regulation of alternator is predetermined by Ampere-turn (MMF)

method.

5. No Load and Blocked Rotor Test on Single Phase Induction Motor

Aim:

 To draw the Equivalent circuit of single phase Induction motor by conducting no

load and blocked rotor test.

Apparatus required:

S. No. Apparatus Type / Rating Quantity

1 Ammeter (0 - 10 A) MI 1

2 Voltmeter (0 - 150 V) MI 1

3 Voltmeter (0 - 300 V) MI 1

4 Wattmeter 150 V / 10 A, UPF 1

5 Wattmeter 300 V / 10 A, UPF 1

6 1ϕ Auto Transformer (0 - 270) V 1

7 Connecting Wires --- As Required

Precautions:

(1) The Autotransformer should be kept at minimum position initially.

 (2) During Blocked rotor test the rotor should not be allowed to rotate.

Procedure:

(1) No load test:

The connections are given as shown in the circuit diagram. Rated voltage is

applied to the motor, by varying the autotransformer. The ammeter, voltmeter and

wattmeter reading are noted.

(2) Blocked rotor test:

The connections are given as shown in the circuit diagram. The current

should be set to the rated value by varying the autotransformer. The readings of

voltmeter and wattmeter are noted.

Tabulation and Readings:

(1) No Load Test:

No Load Voltage

 Vo Volts

No Load Current

Io Amps

No Load Power

Wo Watts

Observed Actual

No Load Power Wo (Actual) = Observed Reading x MF (Multiplication Factor)

(2) Blocked Rotor Test:

Blocked Rotor Voltage

 Vb Volts

Blocked Rotor Current

Ib Amps

Blocked Rotor Power
Wb Watts

Observed Actual

Blocked Rotor Power Wb (Actual) = Observed x MF (Multiplication Factor)

Equivalent Circuit Parameters from No Load Test:

No load Wattmeter reading W0 = V0 I0 Cosϕ0

No load Power Factor, Cosϕ0 = W0 / V0 I0

 =

Loss Component of no load current, Iw = I0 Cosϕ0

 =

Magnetizing Component of no load current, Im = I0 Sinϕ0

 =

Resistance to account for the iron loss, R0 = V0 / Iw

 =

Reactance to account for the magnetization, X0 = V0 / Im

 =

Equivalent Circuit Parameters from Blocked Rotor Test:

Equivalent Impedance per phase referred to stator , Z01 = Vb / Ib

 =

Equivalent Resistance per phase referred to stator , R01 = Wb / Ib
2

 =

Equivalent leakage Reactance per phase referred to stator , X01 = √ Z01
2 - R01

2

 =

Stator winding Resistance per phase, R1 = (using multi meter)

Rotor resistance per phase referred to stator , R2’ = R01 – R1

 =

X1 and X2’ are assumed equal, then X1 = X2’= X01 / 2 =

Equivalent circuit of single phase Induction motor:

Result:

 Thus, the equivalent circuit of single phase Induction motor is drawn

by conducting no load and blocked rotor test.

6. Load Test on Three Phase Slip Ring Induction Motor

Aim:

 To conduct the load test on three phase slip ring induction motor and to draw its

performance characteristics.

Apparatus required:

S. No. Apparatus Type / Rating Quantity

1 Ammeter (0 - 10A) MI 1

2 Voltmeter (0 - 600V) MI 1

3 Wattmeter 600V / 10A, UPF 2

4 Tachometer Analog 1

5 Connecting Wires --- As Required

Precautions:

(1) The motor should be started and stopped without any load on the

 brake drum.

(2) The brake drum should be cooled with water during the entire test.

Theory:

 When 3 supply is given to the stator of a 3-phase induction motor a rotating

magnetic field (RMF) is produced which rotates at synchronous speed. This revolving

flux sweeps over the rotor conductors, an EMF is produced in the rotor by Faraday’s

laws of electromagnetic induction. In order to reduce the relative speed between the

rotor and the rotating magnetic flux, the rotor starts rotating in the same direction as that

of stator flux with a speed, which is less than the synchronous speed. This difference in

speed is called slip speed.

Procedure:

 The connections are given as shown in the circuit diagram. The TPST switch is

closed. The motor is started using Auto transformer starter. The rotor resistance switch

is moved from maximum to minimum position. Now, the motor runs at a speed closure

to the synchronous speed. The no-load readings of ammeter, voltmeter, wattmeter and

speed of the motor are noted. The load on the brake drum is increased and the

corresponding readings are noted.

Graphs:

(1) Output power Vs Torque

Vs Speed

Vs Efficiency

Vs Line Current

(2) Slip Vs Torque

Line

Voltage

VL volts

Line

Ct. IL

Amps

Spring balance

readings

Speed

N

rpm

Wattmeter

readings

Torque

in

N-m

Input

Power

Pi W

Output

Pm

watts



%

%

slip

s

Power

Factor

Cos ϕ S1 kg S2 kg W1 W2

Model Calculations:

Circumference of brake drum 2**R = ------ m

Radius of brake drum R = -----/ 2* m

(1) Torque T = (s1~s2)*9.81*R N-m

(2) Input power Pi = W1 + W2 watts

(3) Output power Pm = 2**N*T / 60 watts

(4) Efficiency  = Pm / Pi x 100 %

(5) % Slip s = (NS – N)/NS x100 NS = 1500 rpm

(6) Power factor = Input power / 3 VLIL

Result:

 Thus the load test on three-phase slip ring induction motor is conducted and its

performance characteristics are drawn.

7. V and Inverted V curves of Synchronous motor

Aim:

 To draw the V and inverted V curves of synchronous motor under no-load
condition.

Apparatus required:

S. No. Apparatus Type / Rating Quantity

1 Ammeter (0 – 10 A) MI 1

2 Ammeter (0 – 2 A) MC 1

3 Voltmeter (0 – 600 V) MI 1

4 Wattmeter 600 V / 10 A, UPF 2

5 Rheostat 400 Ω / 1 A 1

6 Connecting Wires --- As Required

Precautions:

(1) All the switches are kept opened initially.

 (2) The potential divider should be kept at minimum position at the time of

starting and stopping.

Theory:

 When the excitation is normal, the power factor is unity and the armature current

is minimum. For excitation greater than the normal excitation, the value of armature

current increases and the power factor is leading. For excitation less than the normal

excitation, the value of armature current also increases but the power factor is lagging.

The curve between armature current and field current of a synchronous motor is called

V curve. The curve between power factor and field current is known as inverted V

curve.

Procedure:

 The connections are given as per the circuit diagram. The TPST switch is closed.

The motor is started by using DOL starter. The DPST switch on the field side is closed.

The field current is varied by varying the field rheostat and the corresponding values of

line voltage, line current and wattmeter readings are noted.

Tabulation:

Sl.

No.

Line voltage

VL Volts

Line current

IL Amps

Field current

IL Amps

W1

Watts

W2

Watts

Power

Factor

Cos 

Model Calculation:

  = tan -13 (W2 – W1) / (W1 + W2)

 Power factor = cos 

Graphs:

(i) Field Current Vs Armature Current

(ii) Field Current Vs Power Factor (cos )

Result:

 Thus the V and inverted V curves of synchronous motor were drawn.

8. Separation of No Load Losses of 3Φ Induction Motor

Aim:

 To separate the no load losses of three phase Induction motor.

Apparatus required:

S. No. Apparatus Type / Rating Quantity

1 Ammeter (0 – 10 A) MI 1

2 Voltmeter (0 – 600 V) MI 1

3 Wattmeter 600 V / 10A, UPF 2

4 Connecting Wires --- As Required

Precautions:

(1) The Autotransformer should be kept at minimum position initially.

 (2) The entire experiment should be conducted at No load.

Theory:

 The no load losses are the constant losses which include core loss &friction and

windage loss. The separation between the two can be carried out by no load test

conducted from variable voltage, rated frequency supply.

 When the voltage is decreased below the rated value, the core loss reduces as

nearly square of voltage. The slip does not increase significantly and the friction and

windage losses remain constant.

 The voltage is reduced till the machine slip suddenly begins to increase and the

motor tends to stall. At no load , this takes place at a sufficiently reduced voltage. The

graph for power at no load Vs voltage is extrapolated to V=0 which gives friction and

windage loss as iron or core loss as zero at zero voltage.

Procedure:

 The connections are given as per the circuit diagram. The TPST switch is closed.

The motor is started by using Autotransformer starter and set to the rated voltage. The

no load voltmeter, ammeter and wattmeter readings are to be noted. Reduce the voltage

gradually and note down the corresponding meter readings. From the readings taken

draw the graph for no load power Vs voltage.

Tabulation:

Sl.

No.

Line Voltage

Vo Volts

Line Current

Io Volts
W1 Watts W2 Watts

W= W1+ W2

Watts

Graphs:

No Load Power W0 Vs Voltage V0

From the graph, OA = Friction and Windage losses

The stator copper loss is given by

 PSCL = 3 I0
2R1

Where R1 = Stator resistance per phase (use multi meter)

Then, the core loss of the induction motor is given by

 Core loss = W0 - PSCL - Friction and Windage losses

Result:

 Thus the no load losses of three phase Induction motor are separated.

9. No Load and Blocked Rotor Test on three phase squirrel

 cage Induction motor - Circle Diagram

Aim:

 To draw the performance characteristics of three phase squirrel cage induction

motor by no-load and blocked rotor test.

Apparatus required:

(1) Ammeter - (0 - 5) A, MI

(2) Voltmeter - (0 - 600) V, MI

(3) Voltmeter - (0 - 600) V, MI

(4) Watt meter - (600V/5A), LPF

(5) Watt meter - (600V/5A), LPF

(6) Watt meter - (150V/5A), UPF

(7) Watt meter - (150V/5A), UPF

(8) Tachometer

(9) 3Φ Autotransformer

Precautions:

(1) The autotransformer should be kept at minimum position while starting

 and stopping.

 (2) During blocked rotor test, the rotor should not be allowed to rotate.

Theory:

 To draw the circle diagram of a three phase induction motor, the following tests

are to be performed in the motor

(1) No-load test

(2) Blocked rotor test

Using the data’s obtained in the above tests, the circle diagram is drawn. From the

circle diagram for various values of line current, the slip, input power, output power,

torque and power factor are calculated. A graph is drawn by taking the output power in

the X - axis and the remaining in the Y - axis.

Procedure:

(1) No load test:

The connections are given as shown in the circuit diagram. Rated voltage is

applied to the motor, by varying the autotransformer. The ammeter, voltmeter and

wattmeter reading are noted.

(2) Blocked rotor test:

The connections are given as shown in the circuit diagram. The ammeter

reading is adjusted to rated value by varying the autotransformer. The readings of

voltmeter and wattmeter are noted.

Test
Voltmeter reading

in volts

Ammeter reading

in amps

Wattmeter readings

W1 watts W2 watts

O.C. test

S.C. test

Sl.

No.

Line current

IL amps

Motor input

Watts

Rotor output

watts

Efficiency

in %

% slip

s

Power

factor

1 3

2 4

3 5

4 6

5 7

6 8

Model Calculation:

 From O.C. test,

 W0 = W1 + W2

 Cos 0 = W0 / 3 V0I0

 0 = Cos –1(W0 / 3 V0I0)

 From S.C. test,

 Ws = W1 + W2

Cos s = Ws / 3 VsIs

 s = Cos –1(Ws / 3 VsIs)

Short circuit current, when rated voltage is applied to the rotor

 ISN = IS x Vrated / VS

Construction of circle diagram:

(1) Draw X and Y-axis. Take current scale 1 cm = 1 amps.

(2) Draw I0 at an angle 0 from the origin. (Y-axis reference)

(3) Draw O’D parallel to X-axis as shown in figure.

(4) Locate point A at an angle s and the length OA = ISN.

(5) Join O and A. Draw perpendicular for the line O’A as shown in figure.

Locate point C.

(6) Draw a semicircle with C as center and O’C as radius.

(7) Join AG as shown in figure.

(8) For various values of line current, find the efficiency, slip and power

factor using the formula’s given in the model calculation (cut the circle

from the origin for 3,4,5,6,7,8 cm and join with the X-axis like LK in

the diagram)

To locate point E:

 AE / EF = Rotor copper loss / Stator copper loss

 = (Ws – 3Is
2Ra) / 3Is

2Ra *(AE = 1.67 EF)

 Where Ra - armature resistance / phase in ohms

From the graph,

 AF = AE + EF

 EF = --- cm (sub AE interms of EF) (measure AF from graph)

Total power input = AG in cm

Blocked rotor input y = Wsc x (Vrated / V s)2

Power scale = y / AG

Motor input = LK x power scale

 Rotor output = ML x power scale

 Efficiency = ML / LK x 100

 % Slip = MN / NL x 100

Power factor = LK / OL

Graphs:

(1) Output power Vs Efficiency

Vs % Slip

Vs Power factor

Result:

Thus the performance characteristics of three-phase induction motor are

drawn from the circle diagram.

10. Study of Induction Motor Starters

Aim:

To study the different types of starters used for induction motors.

Apparatus Required:

S. No. Apparatus Type / Rating Quantity

1 Star Delta Starter --- 1

2 Auto Transformer Starter --- 1

3 Direct on Line Starter --- 1

1. Star Delta Starter:

Copy the diagram and theory from Electrical Machines II Class Notes

2. Auto Transformer Starter:

Copy the diagram and theory from Electrical Machines II Class Notes

3. Direct on Line Starter:

Copy the diagram and theory from Electrical Machines II Class Notes

Result:

 Thus the different types of starters used for induction motors were studied.

L F A

M

A

+

_

220V

DC

Supply

D

P

S

T

S

Fuse

25A

Fuse

25A

250Ω

1.5A

F1

F2

A1

A2

R

Y B

F1 F2

+

_

+
_

Fuse

5A

Fuse

5A

(0 – 2A)

MC

T

P

S

T

S

(0 – 600V)

MI

400Ω

1A

Fuse

10A

Fuse

10A

Fuse

10A

(0 – 10A)

MI

Name Plate Details

 Motor Alternator

Rated Voltage

Rated Current

Rated Speed

Rated Power

Type

R

Y

B

3 Point Starter

V

A

DPSTS

Circuit Diagram for Regulation of 3ф Alternator by MMF Method

Circuit Diagram for Load Test on 1ф Induction Motor

P

N

D

P

S

T

S

Fuse

10 A
(0 – 10A)

MI

V (0 – 300V)

MI

230V, 50 Hz

1Ф, AC

Supply

A

Aux1

Aux2

CFS1

CFS2

C2

C1

M1

M2

Fuse

10 A

M

C

L

V

300V / 10A

UPF

Starting

Winding
Running

Winding

1Ф
 V

ar
ia

c

Name Plate Details

Rated Voltage

Rated Current

Rated Speed

Rated Power

S1 (Kg)

S2 (Kg)

Brake

Drum

(300V)

Input : 230V

Output : 0 – 270V

Amps : 15 A

V

M

C

L

V

600V / 10A

UPF

M

C

L

V

600V / 10A

UPF

D

O

L

S

T

A

R

T

E

R

Fuse

10A

Fuse

10A

Fuse

10A

415V, 50 Hz

3Ф, AC

Supply

415V, 50 Hz

3Ф, AC

Supply

T

P

S

T

S

L1

L2

L3

R R

Y

B

Y

B

A

Circuit Diagram for Load Test on 3ф Squirrel Cage Induction Motor

(0 – 600V)

MI

(0 – 10A)

MI

W1

W2

R (A1, C2)

Y (B1, A2)

B (C1, B2)

S1 (Kg)

S2 (Kg)

Brake

Drum

(600V)

(600V)

Current : 0 - 25A

Voltage : 280 - 415V

Range : 10A

Name Plate Details

Rated Voltage

Rated Current

Rated Speed

Rated Power

B1

B2

B3

E1

E2

E3

V (0 – 600V)

MI

(0 – 10A)

MI

3Ф Variac

M

C

L

V

600V / 10A

UPF

M

C

L

V

600V / 10A

UPF

Fuse

10A

Fuse

10A

Fuse

10A

415V, 50 Hz

3Ф, AC

Supply

415V, 50 Hz

3Ф, AC

Supply

T

P

S

T

S

R

Y

B

W1

W2

R (A1, C2)

Y (B1, A2)

B (C1, B2)

A

Name Plate Details

Rated Voltage

Rated Current

Rated Speed

Rated Power

Circuit Diagram for No Load Test on 3ф Squirrel Cage Induction Motor

(600V)

(600V)

Input Voltage : 415V

Output Voltage : 0 - 470V

Output Current : 15A / Line

Max Power : 12.211 KVA

B1

B2

B3

E1

E2

E3

V (0 – 150V)

MI

(0 – 10A)

MI

3Ф Variac

M

C

L

V

150 / 10A

UPF

M

C

L

V

150V / 10A

UPF

Fuse

10A

Fuse

10A

Fuse

10A

415V, 50 Hz

3Ф, AC

Supply

415V, 50 Hz

3Ф, AC

Supply

T

P

S

T

S

R

Y

B

W1

W2

R (A1, C2)

Y (B1, A2)

B (C1, B2)

A

Circuit Diagram for Blocked Rotor Test on 3ф Squirrel Cage Induction Motor

Name Plate Details

Rated Voltage

Rated Current

Rated Speed

Rated Power

S2 (Kg)

Brake

Drum

(150V)

(150V)

S1 (Kg)

Rotor Blocked

Input Voltage : 415V

Output Voltage : 0 - 470V

Output Current : 15A / Line

Max Power : 12.211 KVA

V

M

C

L

V

600V / 10A

UPF

M

C

L

V

600V / 10A

UPF

D

O

L

S

T

A

R

T

E

R

Fuse

10A

Fuse

10A

Fuse

10A

415V, 50 Hz

3Ф, AC

Supply

415V, 50 Hz

3Ф, AC

Supply

T

P

S

T

S

L1

L2

L3

R R

Y

B

Y

B

A

(0 – 600V)

MI

(0 – 10A)

MI

W1

W2

A

_

Fuse

5A

400Ω / 1A

DPSTS

Fuse

5A

220V

DC Supply
+ _

+

_

(0 – 2A)

MC

F1 F2

Name Plate Details

Rated Voltage

Rated Current

Rated Speed

Rated Power

Circuit Diagram for “V” and Inverted “V” Curves of Synchronous Motor

R1

R2

Y1

Y2

B1

B2

(600V)

(600V)

Current : 0 - 25A

Voltage : 280 - 415V

Range : 10A

B1

B2

B3

E1

E2

E3

V (0 – 600V)

MI

(0 – 10A)

MI

3Ф Variac

M

C

L

V

600V / 10A

UPF

M

C

L

V

600V / 10A

UPF

Fuse

10A

Fuse

10A

Fuse

10A

415V, 50 Hz

3Ф, AC

Supply

415V, 50 Hz

3Ф, AC

Supply

T

P

S

T

S

R

Y

B

W1

W2

R (A1, C2)

Y (B1, A2)

B (C1, B2)

A

Separation of No-Load Losses of 3Ф Squirrel Cage Induction Motor

Name Plate Details

Rated Voltage

Rated Current

Rated Speed

Rated Power

(600V)

(600V)

Input Voltage : 415V

Output Voltage : 0 - 470V

Output Current : 15A / Line

Max Power : 12.211 KVA

Name Plate Details

Rated Voltage

Rated Current

Rated Speed

Rated Power

B1

B2

B3

E1

E2

E3

V (0 – 600V)

MI

(0 – 10A)

MI

3Ф Variac

M

C

L

V

600V / 10A

UPF

M

C

L

V

600V / 10A

UPF

Fuse

10A

Fuse

10A

Fuse

10A

415V, 50 Hz

3Ф, AC

Supply

415V, 50 Hz

3Ф, AC

Supply

T

P

S

T

S

R

Y

B

W1

W2

A

Circuit Diagram for Load Test on 3ф Slip Ring Induction Motor

Slip Ring Induction Motor

R1

R2

Y1

Y2

B1

B2

U V W

External Resistors

W’ V’ U’

Stator
Rotor

(600V)

(600V)

Input Voltage : 415V

Output Voltage : 0 - 470V

Output Current : 15A / Line

Max Power : 12.211 KVA

B1

E1

B2

E2

B3

E3

L F A

M

+

_

220V

DC

Supply

D

P

S

T

S

Fuse

20A

Fuse

20A

250Ω

1.5A

F1

F2

A1

A2

R

Y B

F1 F2

T

P

S

T

S

(0 – 600V)

MI

Name Plate Details

 Motor Alternator

Rated Voltage

Rated Current

Rated Speed

Rated Power

Type

3 Point Starter

V

Circuit Diagram for Slip Test on 3Ф Alternator

(0 – 10A)

MI

A

Fuse

10A

Fuse

10A

Fuse

10A

3Ф Variac

415V, 50 Hz

3Ф, AC

Supply

415V, 50 Hz

3Ф, AC

Supply

V

(0 – 150V)

MI

R

Y

B

Open

Field

Input Voltage : 415V

Output Voltage : 0 - 470V

Output Current : 15A / Line

Max Power : 12.211 KVA

Circuit Diagram for Blocked Rotor Test on 1ф Induction Motor

P

N

D

P

S

T

S

Fuse

10 A
(0 – 10A)

MI

V (0 – 150V)

MI

230V, 50 Hz

1Ф, AC

Supply

A

Aux1

Aux2

CFS1

CFS2

C2

C1

M1

M2

Fuse

10 A

M

C

L

V

150V / 10A

UPF

Starting

Winding
Running

Winding

1Ф
 V

ar
ia

c

Name Plate Details

Rated Voltage

Rated Current

Rated Speed

Rated Power

S2 (Kg)

Brake

Drum

S1 (Kg)

(150V)

Rotor Blocked

Input : 240V

Output : 0 – 240V

Power : KVA

Circuit Diagram for No Load Test on 1ф Induction Motor

P

N

D

P

S

T

S

Fuse

10 A
(0 – 10A)

MI

V (0 – 300V)

MI

230V, 50 Hz

1Ф, AC

Supply

A

Aux1

Aux2

CFS1

CFS2

C2

C1

M1

M2

Fuse

10 A

M

C

L

V

300V / 10A

LPF

Starting

Winding
Running

Winding

1Ф
 V

ar
ia

c

Name Plate Details

Rated Voltage

Rated Current

Rated Speed

Rated Power

(300V)

Input : 240V

Output : 0 – 240V

Power : KVA

M A D H A E N G I N E E R I N G C O L L E G E
(A Christian Minority Institution)

KUNDRATHUR, CHENNAI – 600 069

 Linear and Digital Circuits Lab Manual

 Name :

 Subject :

 Roll No. :

 Semester : Year:

EX. NO.: 1

DATE: STUDY OF LOGIC GATES

AIM:
To study about logic gates and verify their truth tables.

APPARATUS REQUIRED:

SL.NO. COMPONENT SPECIFICATION QTY

1. AND GATE IC 7408 1

2. OR GATE IC 7432 1

3. NOT GATE IC 7404 1

4. NAND GATE 2 I/P IC 7400 1

5. NOR GATE IC 7402 1

6. X-OR GATE IC 7486 1

7. NAND GATE 3 I/P IC 7410 1

8. IC TRAINER KIT - 1

9. PATCH CARD - 14

THEORY:
Circuit that takes the logical decision and the process are called logic gates.

Each gate has one or more input and only one output.
OR, AND and NOT are basic gates. NAND, NOR and X-OR are known as

universal gates. Basic gates form these gates.

AND GATE:

The AND gate performs a logical multiplication commonly known as AND

function. The output is high when both the inputs are high. The output is low level

when any one of the inputs is low.

OR GATE:

The OR gate performs a logical addition commonly known as OR function.
The output is high when any one of the inputs is high. The output is low level when
both the inputs are low.

NOT GATE:
The NOT gate is called an inverter. The output is high when the input is low.

The output is low when the input is high.

AND GATE:
The NAND gate is a contraction of AND-NOT. The output is high when both

inputs are low and any one of the input is low .The output is low level when both
inputs are high.

NOR GATE:
The NOR gate is a contraction of OR-NOT. The output is high when both

inputs are low. The output is low when one or both inputs are high.

X- OR GATE:
The output is high when any one of the inputs is high. The output is low

when both the inputs are low and both the inputs are high.

PROCEDURE:

(i) Connections are given as per circuit diagram.

(ii) Logical inputs are given as per circuit diagram.

(iii) Observe the output and verify the truth table.

AND GATE

SYMBOL PIN DIAGRAM

OR GATE

NOT GATE

SYMBOL PIN DIAGRAM

EX-OR GATE

SYMBOL PIN DIAGRAM

2-INPUT NAND GATE

SYMBOL PIN DIAGRAM

3-INPUT NAND GATE

NOR GATE

RESULT:

The logic gates are studied and its truth tables are verified.

EX. NO.: 2 VERIFICATION OF BOOLEAN THEOREMS

USING DIGITAL LOGIC GATES

AIM:

To verify the Boolean Theorems using logic gates.

APPARATUS REQUIRED:

SL. NO. COMPONENTS SPECIFICATION QTY.

1. AND GATE IC 7408 1

2. OR GATE IC 7432 1

3. NOT GATE IC 7404 1

4. IC TRAINER KIT - 1

5. CONNECTING WIRES
-

As per
required

THEORY:

BASIC BOOLEAN LAWS

1. Commutative Law

The binary operator OR, AND is said to be commutative if,
1. A+B = B+A

2. A.B=B.A

2. Associative Law

1. A+(B+C) = (A+B)+C

2. A.(B.C) = (A.B).C

3. Distributive Law

The binary operator OR, AND is said to be distributive if,

1. A+(B.C) = (A+B).(A+C)

2. A.(B+C) = (A.B)+(A.C)

4. Absorption Law

1. A+AB = A

2. A+AB = A+B

5. Involution (or) Double complement Law

1. A = A

6. Idempotent Law

1. A+A=A

2. A.A=A

7. Complementary Law

1. A+A' = 1

2. A.A' = 0

8. De Morgan’s Theorem

1. The complement of the sum is equal to the sum of the product of the individual
complements.

A+B = A.B

2. The complement of the product is equal to the sum of the individual complements.
A.B = A+B

Demorgan’s Theorem

a) Proof of equation (1):
Construct the two circuits corresponding to the functions A’. B’and (A+B)’

respectively. Show that for all combinations of A and B, the two circuits give identical
results. Connect these circuits and verify their operations.

b) Proof of equation (2)

Construct two circuits corresponding to the functions A’+B’and (A.B)’ A.B,
respectively. Show that, for all combinations of A and B, the two circuits give identical
results. Connect these circuits and verify their operations.

We will also use the following set of postulates:

P1: Boolean algebra is closed under the AND, OR, and NOT operations.

P2: The identity element with respect to • is one and + is zero. There is no

identity element with respect to logical NOT.

P3: The • and + operators are commutative.

P4: • and + are distributive with respect to one another. That is,

A • (B + C) = (A • B) + (A • C) and A + (B • C) = (A + B) • (A + C).

P5: For every value A there exists a value A’ such that A•A’ = 0 and A+A’ = 1.

This value is the logical complement (or NOT) of A.

P6: • and + are both associative. That is, (A•B)•C = A•(B•C) and (A+B)+C = A+(B+C).

You can prove all other theorems in boolean algebra using these postulates.

PROCEDURE:

1. Obtain the required IC along with the Digital trainer kit.

2. Connect zero volts to GND pin and +5 volts to Vcc .

3. Apply the inputs to the respective input pins.

4. Verify the output with the truth table.

RESULT:

Thus the above stated Boolean laws are verified.

EX. NO.: 3 CODE CONVERTOR

DATE:

AIM:

To design and implement 4-bit

(i) Binary to gray code converter

(ii) Gray to binary code converter

(iii) BCD to excess-3 code converter

(iv) Excess-3 to BCD code converter

APPARATUS REQUIRED:

S. NO. COMPONENT SPECIFICATION QTY.

1. X-OR GATE IC 7486 1

2. AND GATE IC 7408 1

3. OR GATE IC 7432 1

4. NOT GATE IC 7404 1

5. IC TRAINER KIT - 1

6. PATCH CORDS - 35

THEORY:

The availability of large variety of codes for the same discrete elements of

information results in the use of different codes by different systems. A conversion circuit

must be inserted between the two systems if each uses different codes for same

information. Thus, code converter is a circuit that makes the two systems compatible even

though each uses different binary code.

The bit combination assigned to binary code to gray code. Since each code uses

four bits to represent a decimal digit. There are four inputs and four outputs. Gray code is a

non-weighted code.

The input variable are designated as B3, B2, B1, B0 and the output variables are

designated as C3, C2, C1, Co. from the truth table, combinational circuit is designed. The

Boolean functions are obtained from K-Map for each output variable.

A code converter is a circuit that makes the two systems compatible even though

each uses a different binary code. To convert from binary code to Excess-3 code, the input

lines must supply the bit combination of elements as specified by code and the output lines

generate the corresponding bit combination of code. Each one of the four maps represents

one of the four outputs of the circuit as a function of the four input variables.

A two-level logic diagram may be obtained directly from the Boolean expressions

derived by the maps. These are various other possibilities for a logic diagram that

implements this circuit. Now the OR gate whose output is C+D has been used to

implement partially each of three outputs.

BINARY TO GRAY CODE CONVERTOR

TRUTH TABLE:

Binary Input Gray Code Output

B3 B2 B1 B0 G3 G2 G1 G0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1

1 0 1 1 1 1 1 0

1 1 0 0 1 0 1 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 1

1 1 1 1 1 0 0 0

K-Map for G3

G3=B3

K-Map for G2

K-Map for G1

K-Map for G0

LOGIC DIAGRAM:

GRAY CODE TO BINARY CONVERTOR

TRUTH TABLE:

GRAY CODE BINARY CODE

G3 G2 G1 G0 B3 B2 B1 B0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 1 0 0 1 0

0 0 1 0 0 0 1 1

0 1 1 0 0 1 0 0

0 1 1 1 0 1 0 1

0 1 0 1 0 1 1 0

0 1 0 0 0 1 1 1

1 1 0 0 1 0 0 0

1 1 0 1 1 0 0 1

1 1 1 1 1 0 1 0

1 1 1 0 1 0 1 1

1 0 1 0 1 1 0 0

1 0 1 1 1 1 0 1

1 0 0 1 1 1 1 0

1 0 0 0 1 1 1 1

17

K-Map for B3:

K-Map for B2:

B3=G3

K-Map for B1:

18

K-Map for B0:

LOGIC DIAGRAM:

19

TRUTH TABLE: BCD TO EXCESS-3 CONVERTOR
|

BCD input | Excess – 3 output |

 B3 B2 B1 B0 G3 G2 G1 G0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

1

0

1

0

1

0

1

0

1

0

0

0

0

0

1

1

1

1

x

x

x

x

x

x

0

1

1

1

1

0

0

0

1

x

x

x

x

x

x

1

0

0

1

1

0

1

1

0

x

x

x

x

x

x

1

0

1

0

1

0

0

1

0

x

x

x

x

x

X

K-Map for E3:

E3=B3+B2 (B0+B1)

K-Map for E2:

K-Map for E1:

K-Map for E0:

EXCESS-3 TO BCD CONVERTOR

TRUTH TABLE:

| Excess – 3 Input | BCD Output |

B3 B2 B1 B0 G3 G2 G1 G0

0

0

1

1

0

0

0

0

0 1 0 0 0 0 0 1

0 1 0 1 0 0 1 0

0 1 1 0 0 0 1 1

0 1 1 1 0 1 0 0

1 0 0 0 0 1 0 1

1 0 0 1 0 1 1 0

1 0 1 0 0 1 1 1

1 0 1 1 1 0 0 0

1 1 0 0 1 0 0 1

LOGIC DIAGRAM:

EXCESS-3 TO BCD CONVERTOR

K-Map for A:

A=X1X2+X3X4X1

K-Map for B:

K-Map for C:

K-Map for D:

EXCESS-3 TO BCD CONVERTOR

PROCEDURE:

(i) Connections were given as per circuit diagram.

(ii) Logical inputs were given as per truth table

(iii) Observe the logical output and verify with the truth tables.

RESULT:

Thus the following 4-bit converters are designed and constructed.

(i) Binary to gray code converter

(ii) Gray to binary code converter

(iii) BCD to excess-3 code converter

(iv) Excess-3 to BCD code converter

EX. NO.: 4 ADDER AND SUBTRACTOR

DATE:

AIM:

To design and construct half adder, full adder, half subtractor and
full subtractor circuits and verify the truth table using logic gates.

APPARATUS REQUIRED:

SL.NO. COMPONENTS SPECIFICATION QTY.

1. AND GATE IC 7408 1

2. X-OR GATE IC 7486 1

3. NOT GATE IC 7404 1

4. OR GATE IC 7432 1

5. IC TRAINER KIT - 1

6. PATCH CORDS - 23

THEORY:

HALF ADDER:
A half adder has two inputs for the two bits to be added and two outputs one from

the sum ‘ S’ and other from the carry ‘ c’ into the higher adder position. Above circuit is

called as a carry signal from the addition of the less significant bits sum from the X-OR

Gate the carry out from the AND gate.

FULL ADDER:
A full adder is a combinational circuit that forms the arithmetic sum of input; it

consists of three inputs and two outputs. A full adder is useful to add three bits at a time but

a half adder cannot do so. In full adder sum output will be taken from X-OR Gate, carry

output will be taken from OR Gate.

HALF SUBTRACTOR:
The half subtractor is constructed using X-OR and AND Gate. The half subtractor

has two input and two outputs. The outputs are difference and borrow. The difference can

be applied using X-OR Gate, borrow output can be implemented using an AND Gate and

an inverter.

FULL SUBTRACTOR:
The full subtractor is a combination of X-OR, AND, OR, NOT Gates. In a full

subtractor the logic circuit should have three inputs and two outputs. The two half

subtractor put together gives a full subtract or .The first half subtractor will be C and A B.

The output will be difference output of full subtractor. The expression AB assembles the

borrow output of the half subtract or and the second term is the inverted difference output

of first X-OR.

HALF ADDER

TRUTH TABLE:

A B CARRY SUM

0

0

1

1

0

1

0

1

0

0

0

1

0

1

1

0

K-Map for SUM: K-Map for CARRY:

1

1

1

SUM = A’B + AB’ CARRY = AB

LOGIC DIAGRAM:

27

FULL ADDER

TRUTH TABLE:

A B C CARRY SUM

0

0

0

0

0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

K-Map for SUM

1
1

1 1

SUM = A’B’C + A’BC’ + ABC’ + ABC

K-Map for CARRY

CARRY = AB + BC + AC

LOGIC DIAGRAM:

FULL ADDER USING TWO HALF ADDER

HALF SUBTRACTOR

TRUTH TABLE:

A B BORROW DIFFERENCE

0

0

0

0

0 1 1 1

1 0 0 1

1 1 0 0

K-Map for DIFFERENCE

1

1

DIFFERENCE = A’B + AB’

K-Map for BORROW

1

BORROW = A’B

LOGIC DIAGRAM

FULL SUBTRACTOR

TRUTH TABLE:

A B C BORROW DIFFERENCE

0

0

0

0

0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 0

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

K-Map for Difference

1 1

1 1

Difference = A’B’C + A’BC’ + AB’C’ +

ABC K-Map for Borrow

Borrow = A’B + BC + A’C

LOGIC DIAGRAM:

FULL SUBTRACTOR USING TWO HALF SUBTRACTOR

PROCEEDURE:

(i) Connections are given as per circuit diagram.

(ii) Logical inputs are given as per circuit diagram.

(iii) Observe the output and verify the truth table.

RESULT:

Thus, the half adder, full adder, half subtract or and full subtractor

circuits are designed, constructed and verified the truth table using logic gates.

EX. NO.: 5 4-BIT ADDER AND SUBTRACTOR

DATE:

AIM:

To design and implement 4-bit adder and subtractor using basic gates and MSI

device IC 7483.

APPARATUS REQUIRED:

SL.NO. COMPONENT SPECIFICATION QTY.

1. IC IC 7483 1

2. EX-OR GATE IC 7486 1

3. NOT GATE IC 7404 1

3. IC TRAINER KIT - 1

4. PATCH CORDS - 40

THEORY:

4 BIT BINARY ADDER:

A binary adder is a digital circuit that produces the arithmetic sum of two binary

numbers. It can be constructed with full adders connected in cascade, with the output carry

from each full adder connected to the input carry of next full adder in chain. The augends

bits of ‘A’ and the addend bits of ‘B’ are designated by subscript numbers from right to

left, with subscript 0 denoting the least significant bits. The carries are connected in chain

through the full adder. The input carry to the adder is C0 and it ripples through the full

adder to the output carry C4.

4 BIT BINARY SUBTRACTOR:

The circuit for subtracting A-B consists of an adder with inverters, placed between

each data input ‘B’ and the corresponding input of full adder. The input carry C0 must be
equal to 1 when performing subtraction.

4 BIT BINARY ADDER/SUBTRACTOR:

The addition and subtraction operation can be combined into one circuit with one

common binary adder. The mode input M controls the operation. When M=0, the circuit is

adder circuit. When M=1, it becomes subtractor.

4 BIT BCD ADDER:

Consider the arithmetic addition of two decimal digits in BCD, together with an

input carry from a previous stage. Since each input digit does not exceed 9, the output sum

cannot be greater than 19, the 1 in the sum being an input carry. The output of two decimal

digits must be represented in BCD and should appear in the form listed in the columns.

ABCD adder that adds 2 BCD digits and produce a sum digit in BCD. The 2

decimal digits, together with the input carry, are first added in the top 4 bit adder to

produce the binary sum.

PIN DIAGRAM FOR IC 7483:

4-BIT BINARY ADDER

LOGIC DIAGRAM:

4-BIT BINARY SUBTRACTOR

LOGIC DIAGRAM:

4- BIT BINARY ADDER/SUBTRACTOR

LOGIC DIAGRAM:

TRUTH TABLE:

Input Data A Input Data B Addition Subtraction

A4 A3 A2 A1 B4 B3 B2 B1 C S4 S3 S2 S1 B D4 D3 D2 D1

1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0

1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0

0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 0

1 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 1

1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1

1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1

PROCEDURE:

(i) Connections were given as per circuit diagram.

(ii) Logical inputs were given as per truth table

(iii) Observe the logical output and verify with the truth tables.

RESULT:

Thus the 4-bit adder and subtractor using basic gates and MSI device IC 7483 is

designed and implemented.

EX. NO.: 6 PARITY GENERATOR AND CHECKER

 DATE:

AIM:

To design and verify the truth table of a three bit Odd Parity generator and checker.

APPARATUS REQUIRED:

SL. NO. NAME OF THE APPARATUS RANGE QUANTITY

1. Digital IC trainer kit 1

2. EX-OR gate IC 7486

3. NOT gate IC 7404

4. Connecting wires As required

THEORY:

A parity bit is used for the purpose of detecting errors during transmission of binary

information. A parity bit is an extra bit included with a binary message to make the number

of 1’s either odd or even. The message including the parity bit is transmitted and then

checked at the receiving end for errors. An error is detected if the checked parity does not

correspond with the one transmitted. The circuit that generates the parity bit in the

transmitter is called a parity generator and the circuit that checks the parity in the receiver

is called a parity checker.

In even parity the added parity bit will make the total number of 1’s an even

amount and in odd parity the added parity bit will make the total number of 1’s an odd

amount.

In a three bit odd parity generator the three bits in the message together with the

parity bit are transmitted to their destination, where they are applied to the parity checker

circuit. The parity checker circuit checks for possible errors in the transmission.

Since the information was transmitted with odd parity the four bits received must

have an odd number of 1’s. An error occurs during the transmission if the four bits

received have an even number of 1’s, indicating that one bit has changed during

transmission. The output of the parity checker is denoted by PEC (parity error check) and

it will be equal to 1 if an error occurs, i.e.,

if the four bits received has an even number of 1’s.

ODD PARITY GENERATOR

TRUTH TABLE:

SL.NO.

INPUT OUTPUT

(Three bit message) (Odd Parity bit)

A B C P

1. 0 0 0 1

2. 0 0 1 0

3. 0 1 0 0

4. 0 1 1 1

5. 1 0 0 0

6. 1 0 1 1

7. 1 1 0 1

8. 1 1 1 0

From the truth table the expression for the output parity bit is,

P(A,B,C)=Σ(0,3,5,6)

Also written as,

P = A’B’C’ + A’BC + AB’C + ABC’ = (A B C) ‘

ODD PARITY GENERATOR

CIRCUIT DIAGRAM:

ODD PARITY CHECKER

CIRCUIT DIAGRAM:

ODD PARITY CHECKER

TRUTH TABLE:

SL.NO.
INPUT OUTPUT

(4 - Bit Message Received) (Parity Error Check)

 A B C P X

1. 0 0 0 0 1

2. 0 0 0 1 0

3. 0 0 1 0 0

4. 0 0 1 1 1

5. 0 1 0 0 0

6. 0 1 0 1 1

7. 0 1 1 0 1

8. 0 1 1 1 0

9. 1 0 0 0 0

10. 1 0 0 1 1

11. 1 0 1 0 1

12. 1 0 1 1 0

13. 1 1 0 0 1

14. 1 1 0 1 0

15. 1 1 1 0 0

16. 1 1 1 1 1

From the truth table the expression for the output parity checker bit is,

X (A, B, C, P) = Σ (0, 3, 5, 6, 9, 10, 12, 15)

The above expression is reduced as,

X=(A B C P)

PROCEDURE:

1. Connections are given as per the circuit diagrams.

2. For all the ICs 7
th

pin is grounded and 14
th

pin is given +5 V supply.

3. Apply the inputs and verify the truth table for the Parity generator and checker.

PIN DIAGRAM FOR IC 74180:

FUNCTION TABLE:

INPUTS OUTPUTS

Number of High Data

Inputs (I0 – I7)

PE PO ∑E ∑O

EVEN 1 0 1 0

ODD 1 0 0 1

EVEN 0 1 0 1

ODD 0 1 1 0

X 1 1 0 0

X 0 0 1 1

16 BIT ODD/EVEN PARITY GENERATOR

LOGIC DIAGRAM:

TRUTH TABLE:

I7 I6 I5 I4 I3 I2 I1 I0 I7 I6 I5 I4 I3 I2 I1 I0 Active ∑E ∑O

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

16 BIT ODD/EVEN PARITY CHECKER

LOGIC DIAGRAM

TRUTH TABLE:

 I7 I6 I5 I4 I3 I2 I1 I0 I7’I6’I5’I4’I3’I2’11’ I0’ Active ∑E ∑O

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0

0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 1

RESULT:

Thus the three bit and 16 bit odd Parity generator and checker circuits were

designed, implemented and their truth tables were verified.

EX. NO.: 7

DATE:

DESIGN AND IMPLEMENTATION OF ENCODER AND DECODER

AIM:

To design and implement encoder and decoder using logic gates and study

of IC 7445 and IC 74147.

APPARATUS REQUIRED:

SL. NO. COMPONENTS SPECIFICATION QTY.

1. 3 I/P NAND GATE IC 7410 2

2. OR GATE IC 7432 3

3. NOT GATE IC 7404 1

2. IC TRAINER KIT - 1

3. PATCH CORDS - 27

THEORY:

ENCODER:

An encoder is a digital circuit that perform inverse operation of a

decoder. An encoder has 2n input lines and n output lines. In encoder the output

lines generates the binary code corresponding to the input value. In octal to

binary encoder it has eight inputs, one for each octal digit and three output that

generate the corresponding binary code. In encoder it is assumed that only one

input has a value of one at any given time otherwise the circuit is meaningless.

It has an ambiguila that when all inputs are zero the outputs are zero. The zero

outputs can also be generated when D0 = 1.

DECODER:

A decoder is a multiple input multiple output logic circuit which converts

coded input into coded output where input and output codes are different. The

input code generally has fewer bits than the output code. Each input code word

produces a different output code word i.e there is one to one mapping can be

expressed in truth table. In the block diagram of decoder circuit the encoded

information is present as n input producing 2n possible outputs. 2n output values

are from 0 through out 2n – 1.

PROCEDURE:

1. Connections are given as per circuit diagram.

2. Logical inputs are given as per circuit diagram.

3. Observe the output and verify the truth table.

BCD TO DECIMAL DECODER:

PIN DIAGRAM FOR IC 74155: 2x4 Decoder

PIN DIAGRAM FOR IC 74147(Encoder)

LOGIC DIAGRAM FOR ENCODER:

TRUTH TABLE:

INPUT OUTPUT

Y1 Y2 Y3 Y4 Y5 Y6 Y7 A B C

1 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 1 1

0 0 0 1 0 0 0 1 0 0

0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 1 1 1 1

LOGIC DIAGRAM FOR DECODER:

TRUTH TABLE:

INPUT OUTPUT

E A B D0 D1 D2 D3

1 0 0 1 1 1 1

0 0 0 0 1 1 1

0 0 1 1 0 1 1

0 1 0 1 1 0 1

0 1 1 1 1 1 0

RESULT:

EX. NO.: 8

DATE:

CONSTRUCTION AND VERIFICATION OF 4 BIT RIPPLE COUNTER

AND MOD 10/MOD 12 RIPPLE COUNTER

AIM:

To design and verify 4 bit ripple counter mod 10/ mod 12 ripple counter.

APPARATUS REQUIRED:

SL.NO. COMPONENTS SPECIFICATION QTY.

1. JK FLIP FLOP IC 7476 2

2. NAND GATE IC 7400 1

3. IC TRAINER KIT - 1

4. PATCH CORDS - 30

THEORY:

A counter is a register capable of counting number of clock pulse arriving at its clock

input. Counter represents the number of clock pulses arrived. A specified sequence of states

appears as counter output. This is the main difference between a register and a counter. There

are two types of counter, synchronous and asynchronous. In synchronous common clock is

given to all flip flop and in asynchronous first flip flop is clocked by external pulse and then

each successive flip flop is clocked by Q or Q output of previous stage. A soon the clock of

second stage is triggered by output of first stage. Because of inherent propagation delay time

all flip flops are not activated at same time which results in asynchronous operation.

PROCEDURE:

(iv) Connections are given as per circuit diagram.

(v) Logical inputs are given as per circuit diagram.

(vi) Observe the output and verify the truth table.

PIN DIAGRAM FOR IC 7476:

LOGIC DIAGRAM FOR 4 BIT RIPPLE COUNTER:

TRUTH TABLE:

CLK QD QC QB QA

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

16 0 0 0 0

MOD - 10 RIPPLE COUNTER

TRUTH TABLE:

CLK QD QC QB QA

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 0 0 0 0

LOGIC DIAGRAM:

MOD - 12 RIPPLE COUNTER

TRUTH TABLE:

CLK QD QC QB QA

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 0 0 0 0

LOGIC DIAGRAM:

RESULT:

EX. NO.: 9 MULTIPLEXER AND DEMULTIPLEXER

DATE:

AIM:

To design and implement the multiplexer and demultiplexer using logic gates

and study of IC 74150 and IC 74154.

APPARATUS REQUIRED:

SL. NO. COMPONENTS SPECIFICATION QTY.

1. 3 I/P AND GATE IC 7411 2

2. OR GATE IC 7432 1

3. NOT GATE IC 7404 1

2. IC TRAINER KIT - 1

3. PATCH CORDS - 32

THEORY:

MULTIPLEXER:

Multiplexer means transmitting a large number of information units over a smaller

number of channels or lines. A digital multiplexer is a combinational circuit that selects

binary information from one of many input lines and directs it to a single output line. The

selection of a particular input line is controlled by a set of selection lines. Normally there

are 2
n

input line and n selection lines whose bit combination determine which input is

selected.

DEMULTIPLEXER:

The function of Demultiplexer is in contrast to multiplexer function. It takes

information from one line and distributes it to a given number of output lines. For this

reason, the demultiplexer is also known as a data distributor. Decoder can also be used as

demultiplexer.

In the 1: 4 demultiplexer circuit, the data input line goes to all of the AND gates.

The data select lines enable only one gate at a time and the data on the data input line will

pass through the selected gate to the associated data output line.

4:1 MULTIPLEXER

BLOCK DIAGRAM FOR 4:1 MULTIPLEXER:

FUNCTION TABLE:

S1 S0 INPUTS Y

0 0 D0 → D0 S1’ S0’

0 1 D1 → D1 S1’ S0

1 0 D2 → D2 S1 S0’

1 1 D3→D3S1S0

Y=D0S1’S0’+D1S1’S0+D2S1S0’+D3S1S0

TRUTH TABLE:

S1 S0 Y = OUTPUT

0 0 D0

0 1 D1

1 0 D2

1 1 D3

CIRCUIT DIAGRAM FOR MULTIPLEXER:

1:4 DEMULTIPLEXER

BLOCK DIAGRAM FOR 1:4 DEMULTIPLEXER:

FUNCTION TABLE:

S1 S0 INPUT

0 0 X→D0=XS1’S0’

0 1 X→D1=XS1’S0

1 0 X→D2=XS1S0’

1 1 X→D3=XS1S0

Y=XS1’S0’+XS1’S0+XS1S0’+XS1S0

TRUTH TABLE:

INPUT OUTPUT

S1 S0 I/P D0 D1 D2 D3

0 0 0 0 0 0 0

0 0 1 1 0 0 0

0 1 0 0 0 0 0

0 1 1 0 1 0 0

1 0 0 0 0 0 0

1 0 1 0 0 1 0

1 1 0 0 0 0 0

1 1 1 0 0 0 1

LOGIC DIAGRAM FOR DEMULTIPLEXER:

PIN DIAGRAM FOR IC 74150:

PIN DIAGRAM FOR IC 74154:

PROCEDURE:

(i) Connections are given as per circuit diagram.

(ii) Logical inputs are given as per circuit diagram.

(iii) Observe the output and verify the truth table.

RESULT:

Thus the multiplexer and demultiplexer using logic gates are designed
and implemented.

Ex. No.: 10 SHIFT REGISTER

DATE:

AIM:

To design and implement the following shift registers

(i) Serial in serial out

(ii) Serial in parallel out

(iii) Parallel in serial out

(iv) Parallel in parallel out

APPARATUS REQUIRED:

SL.NO. COMPONENT SPECIFICATION QTY.

1. D FLIP FLOP IC 7474 2

2. OR GATE IC 7432 1

3. IC TRAINER KIT - 1

4. PATCH CORDS - 35

THEORY:

A register is capable of shifting its binary information in one or both directions is

known as shift register. The logical configuration of shift register consist of a D-Flip flop

cascaded with output of one flip flop connected to input of next flip flop. All flip flops

receive common clock pulses which causes the shift in the output of the flip flop. The

simplest possible shift register is one that uses only flip flop. The output of a given flip flop

is connected to the input of next flip flop of the register. Each clock pulse shifts the content

of register one bit position to right.

PIN DIAGRAM OF IC 7474:

SERIAL IN SERIAL OUT

LOGIC DIAGRAM:

TRUTH TABLE:

CLK Serial In Serial Out

1 1 0

2 0 0

3 0 0

4 1 1

5 X 0

6 X 0

7 X 1

SERIAL IN PARALLEL

OUT LOGIC DIAGRAM:

TRUTH TABLE:

CLK DATA
OUTPUT

QA QB QC QD

1 1 1 0 0 0

2 0 0 1 0 0

3 0 0 0 1 1

4 1 1 0 0 1

PARALLEL IN SERIAL OUT

LOGIC DIAGRAM:

TRUTH TABLE:

CLK Q3 Q2 Q1 Q0 O/P

0 1 0 0 1 1

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 1

PARALLEL IN PARALLEL OUT

LOGIC DIAGRAM:

TRUTH TABLE:

CLK

DATA INPUT OUTPUT

D
A

D
B

D
C

D
D

Q
A

Q
B

Q
C

Q
D

1 1 0 0 1 1 0 0 1

2 1 0 1 0 1 0 1 0

PROCEDURE:

(i) Connections are given as per circuit diagram.

(ii) Logical inputs are given as per circuit diagram.

(iii) Observe the output and verify the truth table.

RESULT:

The Serial in serial out, Serial in parallel out, Parallel in serial out

and Parallel in parallel out shift registers are designed and implemented.

Ex. No.: 11 SYNCHRONOUS AND ASYNCHRONOUS COUNTER

DATE:

AIM:

To design and implement synchronous and asynchronous counter.

APPARATUS REQUIRED:

S.NO. NAME OF THE APPARATUS RANGE QUANTITY

1. Digital IC trainer kit 1

2. JK Flip Flop IC 7473 2

3. D Flip Flop IC 7473 1

4. NAND gate IC 7400 1

5. Connecting wires As required

THEORY:

Asynchronous decade counter is also called as ripple counter. In a ripple counter

the flip flop output transition serves as a source for triggering other flip flops. In other

words the clock pulse inputs of all the flip flops are triggered not by the incoming pulses

but rather by the transition that occurs in other flip flops. The term asynchronous refers to

the events that do not occur at the same time. With respect to the counter operation,

asynchronous means that the flip flop within the counter are not made to change states at

exactly the same time, they do not because the clock pulses are not connected directly to

the clock input of each flip flop in the counter.

A counter is a register capable of counting number of clock pulse arriving at its

clock input. Counter represents the number of clock pulses arrived. A specified sequence

of states appears as counter output. This is the main difference between a register and a

counter. There are two types of counter, synchronous and asynchronous. In synchronous

common clock is given to all flip flop and in asynchronous first flip flop is clocked by

external pulse and then each successive flip flop is clocked by Q or Q output of previous

stage. A soon the clock of second stage is triggered by output of first stage. Because of

inherent propagation delay time all flip flops are not activated at same time which results

in asynchronous operation.

PIN DIAGRAM FOR IC 7476:

CIRCUIT DIAGRAM:

TRUTH TABLE:

LOGIC DIAGRAM FOR MOD - 10 RIPPLE COUNTER:

TRUTH TABLE:

CLK QA QB QC QD

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 1 1 0 0

4 0 0 1 0

5 1 0 1 0

6 0 1 1 0

7 1 1 1 0

8 0 0 0 1

9 1 0 0 1

10 0 0 0 0

PIN DIAGRAM:

SYNCHRONOUS COUNTER

LOGIC DIAGRAM:

TRUTH TABLE:

CLK

DATA
OUTPUT

QA QB QC QD

1 1 1 0 0 0

2 0 0 1 0 0

3 0 0 0 1 1

4 1 1 0 0 1

PROCEDURE:

(i) Connections are given as per circuit diagram.

(ii) Logical inputs are given as per circuit diagram.

(iii) Observe the output and verify the truth table.

RESULT:

Thus the synchronous and asynchronous counter are designed and implemented.

IC741-GeneralDescription:

The IC 741 is a high performance monolithic operational amplifier constructed using the planar

epitaxial process. High common mode voltage range and absence of latch-up tendencies make the

IC 741 ideal for use as voltage follower. The high gain and wide range of operating voltage

provides superior performance in integrator, summing amplifier and general feedback applications.

Pin Configuration:

Block Diagram of Op-Amp:

Features:

1. No frequency compensation required.

2. Short circuit protection

3. Offset voltage null capability

4. Large common mode and differential voltage ranges

5. Low power consumption

6. No latch-up

 SPECIFICATIONS:

1. Voltage gain A=typically2,00,000

2. Input resistance RL=Ω,practically2MΩ

3. Output resistance R=0,practically75Ω

4. Bandwidth=Hz. It can be operate data any frequency

5. Common mode rejection ratio =

(Ability of op amp to reject noise voltage)

6. Slew rate+V/μ sec

(Rate of change of O/P voltage with respect to applied I/P)

7. When V1=V2,VD=0

8. Input off set voltage (Rs≤10KΩ) max6mv

9. Input off set current=max200nA

10. Input bias current:500nA

11. Inputcapacitance:typicalvalue1.4pF

12. Offset voltage adjustment range:±15mV

13. Input voltage range: ±13V

14. Supply voltage rejection ratio:150μV/V

15. Output voltage swing:+13Vand–13VforRL>2KΩ

16. Outputshort-circuitcurrent:25mA

17. supplycurrent:28mA

18. Powerconsumption:85mW

19. Transient response : rise time= 0.3μs Overshoot=5%

APPLICATIONS:-

1. AC and DC amplifiers.

2. Active filters.

EX. NO.: 12 INTEGRATORANDDIFFERENTIATORUSINGOP-AMP

DATE:

AIM:

To designaClipperandClamperusingop-ampIC741andtotesttheircharacteristics& Performance.

APPARATUSREQUIRED:

 S.NO COMPONENTS/EQUIPMENT RANGE QUANTITY

1. IC 741 --- 01

2.

RESISTORS

100Ω,1.5KΩ Each02

10KΩ,15KΩ Each01

3.

CAPACITOR

0.1μf,0.01μf Each01

0.001μf, 05

4. DIGITALTRAINERKIT --- 01

5. SIGNALGENERATOR (0-3)MHz 01

6. CATHODERAYOSCILLOSCOPE (0-30)MHz 01

7. CONNECTINGWIRES --- FEW

PROCEDURE:

1. From the given frequency fa &fb, the values of Rf,Cf,R1&Rcomp are calculated as given in the

design procedure.
2. Connect the circuit as shown in the circuit diagram.
3. Apply the sinusoidal input as the constant amplitude to the inverting terminal of op-amp.

4. Gradually increase the frequency & observe the output amplitude.

5. Calculate the gain with respect to frequency & plot its graph.

PROCEDURE:DIFFERENTIATOR

1. Select fa equal to the highest frequency of the input signal to be differentiated. Calculate

the component values of C1 & Rf.

2. Choose=20fa & calculate the values of R1&Cf , so that R1C1=RfCf.

3. Connect the components as shown in the circuit diagram.

4. Apply a sinusoidal& square wave input to the inverting terminal of op-amp through R1C1.

5. Observe the shape of the output signal for the given input in CRO.

6. Note down the reading and plot the graph of input versus output wave for both cases.

INTEGRATOR CIRCUITDIAGRAM:-

TABULATION:

Input Output

Amplitude

Time Period

MODEL GRAPH: SINE WAVE FORM

MODEL GRAPH: SQUARE WAVE FORM

 Input Output

Amplitude

Time period

DIFFERENTIATOR:-CIRCUITDIAGRAM:

MODELGRAPH:

(ii)FORSINEWAVEINPUT

TABULATION:

 Input Output

Amplitude

Time period

TABULATION:

 Input Output

Amplitude

Time period

MODELGRAPH:SQUAREWAVEFORM

RESULT:

Thus an Integrator and Differentiator using op-amp are designed and their performance

was successfully tested using op-amp IC741.

EX. NO: 13

DATE:
INVERTING, NON-INVERTING AND

DIFFERENTIAL AMPLIFIER

AIM:

To design, construct and test inverting, non-inverting amplifier using IC 741.

APPARATUS REQUIRED:

S. No. Name of the Apparatus Range/Valu

e
Qty

1. Bread Board - 1

2. RPS (0-30) V 2

3. Dual Power Supply ±15 V 1

4. Resistor 1k Ω,10k Ω 2,2

5. IC 741 Op-Amp - 1

6. Connecting Wires - Few

7. Function Generator (0-3) MHz 1

8. CRO (0-30) MHz 1

9. Voltmeter or Multi-meter (0-30) V 1

DESIGN:

INVERTING AMPLIFIER:

To design an amplifier for the gain of -10.

Gain = Rf/R1.
As the Gain is given negative,

the circuit is inverting amplifier.

Gain Av = Rf/R1 = 10 => Rf= 10 R1.

Let R1= 1k, Rf = 10 * R1 = 10 * 1k = 10k.

NON - INVERTING AMPLIFIER:

To design an amplifier for the gain of 11.

Gain = 1+ Rf/R1

As the Gain is given positive, the circuit is non-inverting amplifier.

Gain Av = 1+Rf/R1 = 11 => Rf = 10 R1.

Let R1= 1k, Rf = 10 * R1 = 10 * 1k = 10k.

THEORY:

INVERTING AMPLIFIER:

A typical inverting amplifier with input resistor R1and a feedback resistor Rf is shown

in the figure. Since the op-amp is assumed to be an ideal one the input bias current is zero and

hence the non -inverting input terminal is at ground potential. The voltage at node „A‟ is
Zero, as the non inverting input terminal is grounded

The nodal equation by KCL at node „A‟ is given by Vi/R1 + Vo/Rf =0 or V0 = -Rf (Vi/R1).

NON- INVERTING AMPLIFIER:

A typical non-inverting amplifier with input resistor R1 and a feedback resistor Rf is

shown in the figure. The input voltage is given to the positive terminal. The output voltage is
given by V0= (1+Rf /R1) Vi

DIFFERENTIAL AMPLIFIER:

Basic differential amplifier is shown in figure, it amplifies the difference between the

two input signal applied. The differential amplifier is characterized by the common mode

rejection ratio (CMRR), which is the ratio of differential gain to common mode gain. The

output voltage is given by V0 = (R2 / R1) (V1 – V2), where V1 and V2 are the input

voltages.

CIRCUIT DIAGRAM:

INVERTING AMPLIFIER

TABULATION:

Wave-form Time Period
in ms

Voltage
in Volts

PracticalGain

Input

(Vin)

Output

(Vo)

PIN DIAGRAM

NON INVERTING AMPLIFIER

TABULATION:

Wave-form Time Period
in ms

Voltage
in Volts

PracticalGain

Input

(Vin)

Output

(Vo)

PROCEDURE:
(i) Connect the inverting amplifier circuit as per the circuit diagram.

(ii) For various input voltage measure and record the output voltage.
(iii) Repeat the same for non- inverting and differential amplifier.

MODEL GRAPH:

INVERTING AMPLIFIER

NON-INVERTING AMPLIFIER

SPECIFICATION FOR IC 741

+Vcc = +15V, - Vcc = -15V

Ambient Temperature: 250 C

Input offset voltage : 6 mV(Max)

Input offset current : 200nA(Max)

Input bias current : 500nA(Max)

Input resistance : 2M

Output resistance : 75

Total Power dissipation : 85mW

RESULT:

The design and testing of the inverting, non-inverting amplifier is done and the input and output wave

forms were drawn.

EX. NO: 14

DATE:

APPLICATIONS OF IC 741 AS ADDER, SUBTRACTOR, COMPARATOR

AIM:
To study the applications of IC 741 as adder, subtractor, comparator

APPARATUS:

1. IC 741
2. Resistors (1KΩ)—4

3.Function generator

4.Regulated power supply

5.IC bread board trainer

6.CRO

7. Patch cards and CRO probes

CIRCUIT DIAGRAM:

Adder:

Subtractor:

Comparator:

THEORY:

ADDER:

Op-Amp may be used to design a circuit whose output is the sum of several input

signalssuchascircuitiscalledasummingamplifierorsummer.Wecanobtaineither inverting or non-

inverting summer.

Thecircuitdiagramsshowsatwoinputinvertingsummingamplifier.Ithastwo input voltages

V1 and V2, two input resistors R1, R2and a feedback resistor Rf.

Assuming that op- amp is in ideal conditions and input bias current is assumed to be zero,

there is no voltage drop across the resistor R comp and hence the non-inverting input terminal is

at ground potential.

By taking nodal equations

V1/R1+V2/R2+V0/Rf=0

V0=-[(Rf/R1) V1+(Rf/R2) V2]

And here R1=R2=Rf=1KΩV0=-(V1+V2)

Thus output is inverted and sum of input.

SUBTRACTOR:

A basic differential amplifier can be used as a subtractor. It has two input signals V1and

V2and two input resistances R1andR2 and a feedback resistor Rf.The input signals scaled to the

desired values by selecting appropriate values for the external resistors.

From the figure, the output voltage of the differential amplifier with a gain of‘1’ is

V0=-R/Rf(V2-V1)
V0=V1-V2.
Also R1=R2=Rf=1KΩ.

Thus, the output voltage eV0 is equal to the voltage V1applied to the non-inverting
terminal minus voltage V2applied to inverting terminal.
Hence the circuit is sub tractor.

COMPARATOR:

A comparator is a circuit which compares signal voltage applied at one input of an op-amp

with a known reference Voltage at the other input. It is basically an open loop op-amp with output

±Vsat as in the ideal transfer characteristics.

It is clear that the change in the outputs that takes place with an increment in input Vi of

only2mv.Thisistheuncertaintyregionwhereoutputcannotbedirectly defined There are basically 2

types of comparators.

1. Non inverting comparator and.

2. Inverting comparator.

The applications of comparator are zero crossing detector, window detector, time marker

generator and phase meter.

OBSERVATIONS:

ADDER:

V1(volts) V2(volts) Theoretical
V0=-(V1+V2)

Practical
V0 =-(V1+V2)

SUBTRACTOR:

V1(volts) V2(volts)
Theoretical

V0=(V1-V2)
Practical

V0 =(V1-V2)

COMPARATOR:

Voltage input Vref
Observed square wave

amplitude

MODEL GRAPH:

PROCEDURE:

ADDER:

1. Connections are made as per the circuit diagram.

2. Apply input voltage 1) V1=5V, V2=2V

2) V1=5V, V2=5V
3) V1=5V, V2=7V.

3. Using Millimeter measure the dc output voltage at the output terminal

4. For different values of V1and V2 measure the output voltage.

SUBTRACTOR:

1. Connections are made as per the circuit diagram.

2. Apply input voltage1) V1=5v,V2=2v

2) V1=5v,V2=5v

3) V1=5v,V2=7v.

3. Using Millimeter measure the dc output voltage at the output terminal.

4. For different values of V1and V2measure the output voltage.

COMPARATOR:

1. Connections are made as per the circuit diagram.

2. Select the sine wave of10V peak to peak, 1K Hz frequency.

3. Apply the reference voltage 2V and trace the input and output wave forms.

4. Superimpose input and output waveforms and measure sine wave amplitude with reference to Vref.

5. Repeatsteps3and 4with referencevoltagesas2V, 4V,-2V,-4Vandobserve the wave forms.

6. Replace sine wave input with 5V dc voltage and Vref=0V.

7. Observe dc voltage at output using CRO.

8. Slowly increase Vrefvoltage and observe the change in saturation voltage.

PRECAUTIONS:

1. Make null adjustment before applying the input signal.

2 Maintain proper Vcc levels.

RESULT:

EX. NO: 15

DATE:
DESIGN OF ASTABLE MULTIVIBRATOR

USING IC 555 TIMER

AIM:
To design and test an astable multivibrator for generating symmetrical and unsymmetrical

square wave form for the given frequency and duty cycle.

APPARATUS REQUIRED:

S. No. Name of the Apparatus Range/Value Qty

1. Bread Board - 1

2. Resistor 3.6 k Ω, 7.2 k Ω 1, 2

3. IC 555 - 1

4. CRO 20 MHz. 1

5. Capacitor 0.1µF, 0.01µF 1, 1

6. RPS (0-30) V/ 5V 1

7. Diode 1

8. Connecting Wires - Few

THEORY:

The 555 timer is connected as an astable multivibrator as shown in figure. In this mode of

operation the timing capacitor charges up towards Vcc (assuming Vo is high initially) through

(Ra + Rb) until the voltage across the capacitor reaches the threshold level (2/3) Vcc. At this

point the internal upper comparator switches state causing the internal flip-flop output to go high.

This turns on the discharge transistor and the timing capacitor C then discharges through Rb and

the discharging transistor. The discharging continues until the capacitor voltage drops to (1/3) Vcc

at which point the internal lower comparator switches states causing the internal flip-flop output

to go low, turning off the discharge transistor. At this point the capacitor starts to charge again,

thus completing the cycle.

DESIGN:

i. For Unsymmetrical waveform:

f =1/T=1.44/(Ra+2Rb)C;

Duty Cycle = D = tlow/ (tlow + t high) => D= R b/ (Ra +2Rb) ;

IC555

Where thigh = 0.693(Ra + R b)C; tlow = 0.69;

Specifications: frequency = 1kHz; Duty cycle = 25%Design:

tlow = 0.25ms = 0.693R b C;

Let C= 0.1µF => R b = 0.25/(0.693X0.1X10-6) =

thigh = 0.693(Ra + R b)C = 0.75 ms => Ra =

• For Symmetrical Wave form :

thigh = 0.693 Ra C; tlow = 0.693 R bC

f = 1/T = 1.44 /(Ra + Rb)C => D= Rb /(Ra + Rb);

Specifications: frequency = 1 kHz; Duty cycle = 50% .

Design: tlow = 0.5 ms = 0.693 R bC;

Let C= 0.1 µF; R b = thigh = 0.693 Ra C = 0.5 ms ; Ra =

CIRCUIT DIAGRAM: Unsymmetrical: Symmetrical:

PIN DIAGRAM FOR IC555

1 8

2 7

3 6

4 5

1 = Ground, 2 = Trigger, 3 = output, 4 = Reset, 5 = Control voltage,

6 = Threshold, 7 = Discharge, 8 = +Vcc

PROCEDURE:

1. Connect the circuit as given using component values as obtained in designed part (i)

2. Observe and sketch the capacitor voltage waveform and output waveform.

3. Measure the frequency and duty cycle of the output waveform.

4. Connect the circuit using component values as obtained from designed part (ii).

5. Repeat step 2 and 3

TABULATION:

Symmetrical: Duty Cycle = 50 %

tlow (ms)

t high (ms)

Frequency (Hz)

Output

Voltage

(V)

Capacitor

Voltage (V)

Theoretical Practical Theoretical Practical Theoretical Practical

Unsymmetrical: Duty Cycle = 25%

tlow (ms)

t high (ms)

Frequency (Hz)

Output

Voltage (V)

Capacitor

Voltage (V)

Theoretical Practical Theoretical Practical Theoretical Practical

MODEL GRAPH:

RESULT:

Thus IC555 timer was operated in astable mode to generate square

wave. Theoretical Duty cycle : 25% 50%

Practical Duty cycle :

EX. NO: 16

DATE:

MONOSTABLE MULTIVIBRATOR USINGIC 555

TIMER

AIM:

To design, construct and test a monostable multivibrator using IC - 555 timer.

APPARATUS REQUIRED:

S. No. Name of the Apparatus Range/Value Qty

1. Bread Board - 1

2. Resistor 1.8 k Ω 1

3. IC 555 - 1

4. CRO 20 MHz. 1

5. Function Generator 0-3 MHz. 1

6. Capacitor 0.1µF, 0.01µF 1, 1

7. RPS (0-30) V/ 5V 1

8. Connecting Wires - Few

THEORY:

Mono-stable multivibrator has only one stable state and one quasi-stable state. Transition

is obtained from the stable to quasi-stable by triggering. The transition time due to external

triggering is very short, whereas the time for the circuit to remain quasi-stable state is very large.

The circuit returns to stable state from its quasi-stable state by itself, without requiring any

external triggering signal. Because, after triggering, the circuit returns from quasi-stable state by

itself after a certain time delay, therefore the circuit is also called a one shot multivibrator or

univibrator.

The mono-stable multivibrator is a regenerative device, which is used to generate

rectangular output, pulse of predetermined width. The device can make a fast transition in time T

after the application of input trigger and as such can be used as a delay circuit. The circuit is also

referred to as gating circuit, because it generates rectangular wave form, which can be used to

gate other circuits. The Pulse width is T

= 1.1 RC, where R is the resistor and C is the capacitor.

DESIGN:

T=1.1 RC;

Let T = 200 µsec; C= 0.1µF => R =

CIRCUIT DIAGRAM:

PROCEDURE:

1. Connect the circuit as shown in circuit diagram.

2. Apply negative trigger to pin 2.

3. Observe and sketch the output wave form at pin 3.

4. Observe the output pulse width for different values of C and tabulate.

TABULATION:

R (k Ω) C (F) Pulse width

T (Practical)

(ms)

Pulse width

T (Theoretical)

(ms)

MODEL GRAPH:

RESULT:

Thus IC555 timer was operated in Mono stable mode to generate square waveform.

Theoretical pulse duration =

Practical pulse duration =

EX. NO: 17

DATE:

PLL (IC 565) CHARACTERISTICS AND ITS USEAS

FREQUENCY MULTIPLIER

AIM:
a. To study the characteristics of a Phase Locked Loop (PLL)-IC 565.

b. To study the frequency multiplier circuit using PLL-IC 565.

THEORY:

a) PLL- It is basically a feedback control system that controls the phase of a voltage

controlled oscillator (VCO). The input signal is applied to one input of a phase detector. The

other input is connected to the output of VCO. Normally the frequencies of both signals will be

nearly the same. The output of the phase detector is a voltage proportional to the phase difference

between the two inputs. This signal is applied to the loop filter. It is the loop filter that determines

the dynamic characteristics of the PLL. The filtered signal controls the VCO. The output of the

VCO is applied to the phase detector. Normally the loop filter is designed to match the

characteristics required by the application of the PLL. If the PLL is to acquire and track a signal

the bandwidth of the loop filter will be greater than if it expects a fixed input frequency. The

frequency range which the PLL will accept and lock on is called the capture range. Once the PLL

is locked and tracking a signal the range of frequencies that the PLL will follow is called the

tracking range. Generally the tracking range is larger than the capture range. Figure shows the

block diagram of PLL

b) Frequency multiplier using the 565 PLL- The frequency divider is inserted between the

VCO and the phase comparator. Since the output of the divider is locked to the input frequency

fin, the VCO is actually running at a multiple of the input frequency. The desired amount of

multiplication can be obtained by selecting a proper divide by N network, where N is an integer.

For example, to obtain the output frequency fOUT = 5 fin, a divide by N = 5 network is needed.

The 4 bit binary counter (7490) is configuredas a divide by 5 circuits. The transistor Q is used as

a driver stage to increase the driving capability of the NE 565. C3 is used to eliminate possible

oscillation. C2 should be large enough to stabilize the VCO frequency.

fin

DESIGN: a. PLL Circuit

The Circuit components are R1 = 12 KΩ, C1 =0.01 µF, C2 =10 µF & C3 =0.001 µF.

The design formulae are: V= (+V)-(-V) = 20 Volt.

Free running frequency, fout= 1.2 / [4 R1 C1] = 2.5 KHz.

Lock Range, fL= ± 8 X fout / V = ± 1 KHz.

Capture Range, fc= ± fL / [2 π X 3.6 X 103 X C2] = ± 66.49 Hz

LPF

Fin = fout / N
Voltage Controlled

Oscillator

VCO Amplifier Phase Comparator

CIRCUIT DIAGRAM:

a. PLL Circuit

b. Frequency Multiplier

RESULT:
PLL is studied and used as frequency multiplier.

EX. NO: 18

DATE:
IC REGULATED DC POWER SUPPLY USING

LM 723 and LM 317

AIM:
To design the regulated DC power supply using LM 723 and LM 317.

APPARATUS REQUIRED:

S. No. Name of the Apparatus Range/Value Qty

1. Bread Board - 1

2. Resistor 5 KΩ, 240Ω 1

3. NE 565 , IC 7490 - 1
each

4. Voltmeter (0 – 30)V 1

6. Capacitor 10µF, 0.1µF,
0.100pF

1
each

7. RPS (0-30) V/ 5V 1

8. Connecting Wires - Few

THEORY:

A voltage regulator is designed to automatically maintain a constant voltage level. A

voltage regulator may be a simple "feed-forward" design or may include negative feedback

control loops. It may use an electromechanical mechanism, or electronic components. Depending

on the design, it may be used to regulate one or more AC or DC voltages. Electronic voltage

regulators are found in devices such as computer power supplies where they stabilize the DC

voltages used by the processor and other elements. In automobile alternators and central power

station generator plants, voltage regulators control the output of the plant. In an electric power

distribution system, voltage regulators may be installed at a substation or along distribution lines

so that all customers receive steady voltage independent of how much power is drawn from the

line. The circuit diagram shows an IC 723 connected to operate as a positive voltage regulator.

The output voltage can be set to any value between approximately 7 V (reference voltage) and 37

V by appropriate selection of resistors R1 and R2. A potentiometer may be included between R1

and R2, of course, to make the voltage adjustable. An external transistor may be Darlington

connected to Q1 (as shown in earlier post) to handle large load current.

DESIGN:

a) REGULATOR USING LM317 Vout = 6V (given). Vout =

1.25[1+R2/R1]Let R2 = 240Ω, R1 = R2/(0.8XVout-1) =

b) REGULATOR USING LM723

Vout = 3V (given).

Vout= R2Vref /R1 +R2 1

Vref = 7V. Choose R1+R2=10K Ω, C1 = 100pF.

R2 = Vout (R1 +R2)/ Vref = 3V 10 103 /7V =R
R2 R1 =

3
R1 R2

PROCEDURE:

1. Connect the circuit as shown in circuit diagram.
2. Apply the unregulated power supply at pin 3.
3. Vary the voltage and observe the regulated output and tabulate the

reading.

4. Plot the graph.

CIRCUIT DIAGRAM:

REGULATOR USING LM317 TABULATION:

REGULATOR USING LM 723:

RESULT:

Thus the DC Power supply using LM317 and LM 723 is designed and graph is plotted.

S.No. Vin in Volts Vout in Volts

S.No. Vin in Volts Vout in Volts

M A D H A E N G I N E E R I N G C O L L E G E
(A Christian Minority Institution)

KUNDRATHUR, CHENNAI – 600 069

C Programming and Data Structures Lab

 Name :

 Subject :

 Roll No. :

 Semester : Year:

Ex no:1a ARRAY IMPLEMENTATION USING STACK ADT

Aim:
To write a program for stack using array implementation.

Algorithm :

Step1:Define a array which stores stack elements..

Step 2: The operations on the stack are
a)PUSH data into the stack

b)POP data out of stack

Step 3: PUSH DATA INTO STACK
3a.Enter the data to be inserted into stack.
3b.If TOP is NULL

the input data is the first node in stack.
the link of the node is NULL.
TOP points to that node.

3c.If TOP is NOT NULL
the link of TOP points to the new node.
TOP points to that node.

Step 4: POP DATA FROM STACK
4a.If TOP is NULL

the stack is empty
4b.If TOP is NOT NULL

the link of TOP is the current TOP.
the pervious TOP is popped from stack.

Step 5. The stack represented by linked list is traversed to display its content.

PROGRAM

#include<stdio.h>
#include<conio.h>
#define SIZE 5
int stack[SIZE],top=-1;
void push();
void pop();
void display();
void main()
{
int choice;
int isempty();
int length();
clrscr();
while(1)
{

printf(“\n 1.Push”);
printf(“\n 2. POP”);
printf(“\n 3.Display”);
printf(“\n 4. Length ”);
printf(“\n 5.Quit”);
printf(“\n Enter the choice:”);
scanf(“\n %d”,&choice);
switch(choice)
{

case 1: push();
break;

case 2: pop();
break;

case 3: display();
break;

case 4: printf(“\n No. of elements in the stack is %d”,length());
break;

case 5: exit(0);
break;

default: printf(“\n Invalid choice”);
}

}
}

void push()
{

int n;
if(top==SIZE-1)

printf(“\n Stack is full”);
else
{

printf(“\nEnter the no.”);
scanf(“%d”,&n);
top++;
stack[top]=n;

}

void pop()
{

{

}
else
{

}
}

int n;
if(isempty())

printf(“\nStack is empty”);
top=-1;

n=stack[top];
printf(“\n %d is popped from the stack \n”,n);
--top;

void display()
{

int i,temp=top;
if(isempty())
{

printf(“\n Stack Empty”);
return;
}

printf(“\n Elements in the stack:”);
for(i=temp;i>=0;i--)
printf(“%d \n”,stack[i]);
}

int isempty()
{

return (top==-1);
}
int length()

{
return (top+1);

}

 OUTPUT

1. Push
2. POP
3.Display
4. Length
5.Quit

Enter the choice: 1

Enter the no. 10

1. Push
2. POP
3.Display
4. Length
5.Quit

Enter the choice: 1

Enter the no. 20

1. Push
2. POP
3.Display
4. Length
5.Quit

Enter the choice: 1

Enter the no. 30

1.Push

2. POP
3.Display
4. Length
5.Quit

Enter the choice: 1

Enter the no. 40

1. Push
2. POP
3.Display
4. Length
5.Quit

Enter the choice: 3

Elements in the stack:

40
30
20
10

1. Push
2. POP
3.Display
4. Length
5.Quit

Enter the choice: 2

40 is popped from the stack

1.Push

2. POP
3. Display
4. Length
5.Quit

Enter the choice: 4
Number of elements in the stack is 3

1. Push
2. POP
3.Display
4. Length
5.Quit

Enter the choice: 5

Ex no:1b ARRAY IMPLEMENTATION USING QUEUE ADT

Aim:
To write a program for Queue using array implementation.

Algorithm :

Step1:Define a array which stores queue elements..

Step 2: The operations on the queue are
a)INSERT data into the queue
b)DELETE data out of queue

Step 3: INSERT DATA INTO queue
3a.Enter the data to be inserted into queue.
3b.If TOP is NULL

the input data is the first node in queue.
the link of the node is NULL.
TOP points to that node.

3c.If TOP is NOT NULL
the link of TOP points to the new node.
TOP points to that node.

Step 4: DELETE DATA FROM queue
4a.If TOP is NULL

the queue is empty
4b.If TOP is NOT NULL

the link of TOP is the current TOP.
the pervious TOP is popped from queue.

Step 5. The queue represented by linked list is traversed to display its content.

PROGRAM

include<stdio.h>
define MAX 5

int queue_arr[MAX];
int rear = -1;
int front = -1;

main()
{
int choice;
while(1)
{
printf("1.Insert\n");
printf("2.Delete\n");
printf("3.Display\n");
printf("4.Quit\n");
printf("Enter your choice : ");
scanf("%d",&choice);

switch(choice)
{
case 1 :
insert();
break;
case 2 :
del();
break;
case 3:
display();
break;
case 4:
exit(1);
default:
printf("Wrong choice\n");
}/*End of switch*/
}/*End of while*/
}/*End of main()*/

insert()
{
int added_item;
if (rear==MAX-1)
printf("Queue Overflow\n");

else
{
if (front==-1) /*If queue is initially empty */
front=0;
printf("Input the element for adding in queue : ");
scanf("%d", &added_item);
rear=rear+1;
queue_arr[rear] = added_item ;
}
}/*End of insert()*/

del()
{
if (front == -1 || front > rear)
{
printf("Queue Underflow\n");
return ;
}
else
{
printf("Element deleted from queue is : %d\n", queue_arr[front]);
front=front+1;
}
}/*End of del() */

display()
{
int i;
if (front == -1)
printf("Queue is empty\n");
else
{
printf("Queue is :\n");
for(i=front;i<= rear;i++)
printf("%d ",queue_arr[i]);
printf("\n");
}
}/*End of display() */

OUTPUT

1. Insert
2.Delete
3.Display
4.Quit
Enter your choice:1

Input the element for adding in queue :10

1.Insert

2. Delete
3. Display
4.Quit
Enter your choice:1

Input the element for adding in queue :20

1.Insert
2.Delete
3.Display
4.Quit
Enter your choice:1

Input the element for adding in queue :30

1.Insert

2. Delete
3. Display
4.Quit
Enter your choice:1

Input the element for adding in queue :40

1.Insert
2.Delete
3.Display
4.Quit
Enter your choice:3

Queue is :
40
30
20

10

1. Insert
2.Delete
3.Display
4.Quit
Enter your choice:2

Element deleted from queue is :10

1.Insert
2. Delete
3.Display
4.Quit
Enter your choice:3

Queue is :
40
30
20

1.Insert
2.Delete
3.Display
4.Quit
Enter your choice:4

EX : 2 ARRAY IMPLEMENTATION OF LIST ADT

Aim:
To write a program for stack using linked list implementation.

Algorithm :

Step1:Define a C-struct for each node in the stack. Each node in the stack
contains data and link to the next node. TOP pointer points to last
node inserted in the stack.

Step 2: The operations on the stack are
a)PUSH data into the stack
b)POP data out of stack

Step 3: PUSH DATA INTO STACK

3a.Enter the data to be inserted into stack.
3b.If TOP is NULL

the input data is the first node in stack.
the link of the node is NULL.
TOP points to that node.

3c.If TOP is NOT NULL
the link of TOP points to the new node.
TOP points to that node.

Step 4: POP DATA FROM STACK
4a.If TOP is NULL

the stack is empty
4b.If TOP is NOT NULL

the link of TOP is the current TOP.
the pervious TOP is popped from stack.

Step 5. The stack represented by linked list is traversed to display its content.

PROGRAM

include<stdio.h>
include<conio.h>

struct node
{
int info;
struct node *link;
} *top=NULL;

main()
{
int choice;
while(1)
{ printf("1.Push\n");
printf("2.Pop\n");
printf("3.Display\n");
printf("4.Quit\n");
printf("Enter your choice : ") ;
scanf("%d", &choice);

switch(choice)
{
case 1:
push();
break;
case 2:
pop();
break;
case 3:
display();
break;
case 4:
exit(1);
default :
printf("Wrong choice\n");
}/*End of switch */
}/*End of while */
}/*End of main() */

push()
{
struct node *tmp;
int pushed_item;

tmp = (struct node *)malloc(sizeof(struct node));
printf("Input the new value to be pushed on the stack : ");
scanf("%d",&pushed_item);
tmp->info=pushed_item;
tmp->link=top;
top=tmp;
}/*End of push()*/

pop()
{
struct node *tmp;
if(top == NULL)
printf("Stack is empty\n");
else
{ tmp=top;
printf("Popped item is %d\n",tmp->info);
top=top->link;
free(tmp);
}

}/*End of pop()*/

display()
{ struct node *ptr;
ptr=top;
if(top==NULL)
printf("Stack is empty\n");
else
{
printf("Stack elements :\n");
while(ptr!= NULL)
{
printf("%d\n",ptr->info);
ptr = ptr->link;
}/*End of while */
}/*End of else*/
}/*End of display()*/

OUTPUT

1. Push
2. POP
3.Display
5.Quit

Enter the choice: 1

Input the new value to be pushed on the stack :. 10

1. Push
2. POP
3.Display
5.Quit

Enter the choice: 1

Input the new value to be pushed on the stack : 20

1.Push

2. POP
3. Display
5.Quit

Enter the choice: 1

Input the new value to be pushed on the stack : 30

1.Push
2. POP
3.Display
5.Quit

Enter the choice: 1

Input the new value to be pushed on the stack : 40

1.Push
2. POP
3.Display
5.Quit

Enter the choice: 3

Elements in the stack:
40
30
20
10

1. Push
2. POP
3.Display
5.Quit

Enter the choice: 2

40 is popped from the stack

1.Push
2. POP
3.Display
5.Quit

Enter the choice: 5

Ex:3a
LINKED LIST IMPLEMENTATION USING LIST

AIM:

To implement a linked list and do all operations on it.

ALGORITHM:

Step 1 : Start the process.

Step 2: Initialize and declare variables.

Step 3: Enter the choice. INSERT / DELETE.

Step 4: If choice is INSERT then

a. Enter the element to be inserted.

b. Get a new node and set DATA[NEWNODE] = ITEM.

c. Find the node after which the new node is to be inserted.

d. Adjust the link fields.

e. Print the linked list after insertion.

Step 5: If choice is DELETE then

a. Enter the element to be deleted.

b. Find the node containing the element (LOC) and its preceding node (PAR).

c. Set ITEM = DATA[LOC] and delete the node LOC.

d. Adjust the link fields so that PAR points to the next element. ie

LINK[PAR] = LINK [LOC].

e. Print the linked list after deletion.

Step 6: Stop the process.

PROGRAM

#include<stdio.h>
#include<stlib.h>

#include<conio.h>

struct node;

typedef struct node *ptr;

typedef ptr list;

typedef ptr position;

typedef int data;

struct node

{

data element;

struct node *next;

}

//function prototypes

void makeempty(void); //to make empty list

int isempty(void); //to check list is empty or not
void create(void); //to create initial set of elements

position findprevious(data); //to find position of previous element

void delet(data); //to delete given element

void display(void); //to display all the elements

void insert(data, int); //to insert a new element

position getprevposition(int); //to find position of previous element

data getelement(int); //to find the element at given position

int getposition(data); //to find position of given element

//global variable declarations

position first;

position last;

position L;

int length;

//to make empty list

void makeempty(void)

{

position tmp;
tmp = malloc(sizeof(list));

tmp->next = NULL;

L = tmp;

first = last = NULL;

}

//to check list is empty or not

int isempty(void)

{

if (L->next = NULL)

return 1;

else

}

return 0;

//to create initial set of elements

void create(void)

{

data e;

int n, i;

position tmp;

makeempty();

printf(“Enter number of element : \ “);

scanf(“%d”, &n);

for (i=0; i<n; i++)

{

printf(“Enter an element : “);

scanf(“%d”, &e);

tmp = malloc(sizeof(list));
tmp->element = e;

tmp->next = NULL;

if (L->next == NULL)

{

}

else

{

}

}

}

L->next = tmp;

first = last = tmp;

last->next = tmp;

last = tmp;

//to display all the elements
void display()

{

position t;

for(t=first; t!=NULL; t=t->next)
printf(“%d --> “, t->element);

getch();

}

//to find position of previous element

position getprevposition(int index)

{

position tmp;

int count = 1;

if (index>length)
{

}

else

{

}

}

printf(“Invalid Position”);

return NULL;

for (tmp=first; count<index-1; tmp=tmp->next)

count++;

return tmp;

//to insert a new element
void insert(data x, int p)

{

position pos, tmp;

tmp = malloc(sizeof(list));
tmp->element=x;

if (p==1) //first position

{

tmp->next = first;

L->next = tmp;

first = tmp;

length++;

}

else if (p == length) //last position

{

last->next = tmp;

last = tmp;

tmp->next = NULL;
}

else //arbitrary position

{

pos = getpreviousposition(p);

if (pos == NULL)

{

}

else

printf(“Invalid position”);

getch();

{

tmp->next = pos->next;

pos->next = tmp;

length++;

}

}

}

//to find position of previous element

position findprevious(data x)

{

position p;

p = L;

while (p->next->element!=x && p->next!=NULL)

p = p->next;
return p;

}

//to delete given element
void delet(data x)

{

position p, tmp;

if (isempty())

{

}

else

{

printf(“List is empty”);

getch();

p = findprevious(x);

if (p->next = NULL)

{

}

else

{

printf(“Element not found”);

getch();

if (p->next == last)

{

free (p->next);

p->next = NULL;

last = p;

length--;
return;

}

if (p == L)

{

first = first->next;

}

tmp = p->next;

p->next = tmp->next;

free(tmp);

length--;

}

}

}

int menu()

{

int ch;

printf(“1. Create\n2. Display\n3.Insert\n4.Get Element\n5.Get Position\n6. Delete\n7.
Exit\n\n Enter your choice : “);

scanf(“%d”, &choice);

return choice;

}

//to find the element at given position
data getelement(int pos)

{

position p;

int i;

p = L;

if (pos > length)

return NULL;

else

{

}

}

for(i=0; i<pos; i++)

p = p->next;

return p->element;

//to find position of given element

int getposition(data e)

{

position p;

int i=0;

for (p=first; p!=NULL; p=p->next)
{

if (p->element == e)

return i+1;

else

i++;

}

return NULL;

}

void main()

{

int ch;

data n, p;

while(1)

{

clrscr();

ch = menu();
switch (ch)

{

case 1:

case 2:

case 3:

case 4:

case 5:

create();
break;

display();

break;

printf(“Enter an element : “);

scanf(“%d”, &n);

printf(“Enter Position : “);

scanf(“%d”, &p);

insert (n, p);

break;

printf(“Enter an element : “);

scanf(“%d”, &n);

delet (n);

break;

printf(“Enter position : “);

scanf(“%d”, &p);

if (p<1 || p>length)

printf(“Invalid position”);

else

printf(“Element at position %d is %d”, p, getelement(p));

getch();

break;

case 6:

printf(“Enter an element : “);

scanf(“%d”, &n);

if (getposition(n) == NULL)

default:

else

getch();

break;

printf(“Element doesn’t Exist”);

printf(“%d exists at position %d”, n, getposition(n));

printf(“Invalid Choice”);
getch();

}

}

}

OUTPUT

1. Create
1. Display
2. Insert
3. Delete
4. Get element
5. Get position
6. Exit

Enter your Choice: 1

Enter number of element: 3

Enter an element: 10

Enter an element: 20

Enter an element: 30

Enter your Choice: 3

Enter element: 25

Enter Position: 3

Enter your Choice: 2

10 --> 20 --> 25 --> 30

Enter your Choice: 6

Enter an element:20

20 exists at position 2

Enter your Choice: 4

Enter an element 30

Enter your Choice: 2

10 --> 20 --> 25

Enter your Choice: 6

Ex:3b

Aim:

LINKED LIST IMPLEMENTATION USING STACK

To write a program for stack using linked list implementation.

Algorithm :

Step1:Define a C-struct for each node in the stack. Each node in the stack

contains data and link to the next node. TOP pointer points to last

node inserted in the stack.

Step 2: The operations on the stack are

a)PUSH data into the stack

b)POP data out of stack

Step 3: PUSH DATA INTO STACK

3a.Enter the data to be inserted into stack.

3b.If TOP is NULL

the input data is the first node in stack.
the link of the node is NULL.

TOP points to that node.

3c.If TOP is NOT NULL

the link of TOP points to the new node.

TOP points to that node.

Step 4: POP DATA FROM STACK

4a.If TOP is NULL

the stack is empty

4b.If TOP is NOT NULL

the link of TOP is the current TOP.
the pervious TOP is popped from stack.

Step 5. The stack represented by linked list is traversed to display its content.

PROGRAM

include<stdio.h>

include<conio.h>

struct node

{

int info;

struct node *link;

} *top=NULL;

main()

{

int choice;

while(1)

{ printf("1.Push\n");

printf("2.Pop\n");

printf("3.Display\n");

printf("4.Quit\n");

printf("Enter your choice : ") ;

scanf("%d", &choice);

switch(choice)

{

case 1:
push();

break;

case 2:

pop();

break;

case 3:

display();

break;

case 4:

exit(1);

default

:

printf("Wrong choice\n");

}/*End of switch */

}/*End of while */

}/*End of main() */

push()

{

struct node *tmp;

int pushed_item;

tmp = (struct node *)malloc(sizeof(struct node));

printf("Input the new value to be pushed on the stack : ");

scanf("%d",&pushed_item);

tmp->info=pushed_item;

tmp->link=top;

top=tmp;

}/*End of push()*/

pop()

{

struct node *tmp;

if(top == NULL)

printf("Stack is empty\n");

else

{ tmp=top;

printf("Popped item is %d\n",tmp->info);

top=top->link;

free(tmp);

}

}/*End of pop()*/

display()

{ struct node *ptr;

ptr=top;

if(top==NULL)

printf("Stack is empty\n");

else

{
printf("Stack elements :\n");

while(ptr!= NULL)

{

printf("%d\n",ptr->info);

ptr = ptr->link;

}/*End of while */

}/*End of else*/

}/*End of display()*/

OUTPUT

1. Push

2. POP

3.Display

5.Quit

Enter the choice: 1

Input the new value to be pushed on the stack :. 10

1. Push

2. POP

3.Display

5.Quit

Enter the choice: 1

Input the new value to be pushed on the stack : 20

1.Push

2. POP
3.Display

5.Quit

Enter the choice: 1

Input the new value to be pushed on the stack : 30

1.Push

2. POP

3.Display

5.Quit

Enter the choice: 1

Input the new value to be pushed on the stack : 40

1.Push

2. POP

3.Display

5.Quit

Enter the choice: 3

Elements in the stack:

40

30

20

10

1. Push
2. POP

3.Display

5.Quit

Enter the choice: 2

40 is popped from the stack

1.Push

2. POP

3.Display

5.Quit

Enter the choice: 5

Ex:3c

Aim:

LINKED LIST IMPLEMENTATION USING QUEUE

To write a program for Queue using Linked implementation.

Algorithm :

Step1: Define a C-struct for each node in the queue. Each node in the queue

contains data and link to the next node. Front and rear pointer points to first and last

node inserted in the queue.

Step 2: The operations on the queue are

a)INSERT data into the queue

b)DELETE data out of queue

Step 3: INSERT DATA INTO queue

3a.Enter the data to be inserted into queue.

3b.If TOP is NULL

the input data is the first node in queue.

the link of the node is NULL.

TOP points to that node.

3c.If TOP is NOT NULL

the link of TOP points to the new node.

TOP points to that node.

Step 4: DELETE DATA FROM queue

4a.If TOP is NULL

the queue is empty

4b.If TOP is NOT NULL

the link of TOP is the current TOP.

the pervious TOP is popped from queue.

Step 5. The queue represented by linked list is traversed to display its content.

PROGRAM

#include<stdio.h>

#include<malloc.h>

#define MAXSIZE 10

void insertion();

void deletion();

void display();

struct node

{

int info;

struct node *link;

}*new,*temp,*p,*front=NULL,*rear=NULL;

typedef struct node N;

main()

{

int ch;

do

{
printf("\n\t\t\tLinked queue");

printf("\n 1.Insertion");

printf("\n 2.Deletion");

printf("\n 3.Display");

printf("\n 4.Exit");

printf("\n Enter your choice : ");

scanf("%d",&ch);

switch(ch)

{

case 1:

insertion();

break;

case 2:

deletion();

break;

case 3:

display();

break;

default:

break;

}

}

while(ch<=3); }

void insertion()

{

int item;

new=(N*)malloc(sizeof(N));

printf("\nEnter the item : ");

scanf("%d",&item);

new->info=item;

new->link=NULL;

if(front==NULL)

front=new;

else

rear->link=new;

rear=new;

}

void deletion()

{

if(front==NULL)

printf("\nQueue is empty");

else

{

p=front;

printf("\nDeleted element is : %d",p->info);

front=front->link;

free(p);

}

}

void display()

{
if(front==NULL)

printf("\nQueue is empty");

else

{
printf("\nThe elements are : ");

temp=front;

while(temp!=NULL)

{

printf("%d",temp->info);

temp=temp->link;

}

}

}

OUTPUT

1.Insertion

2.Deletion

3.Display

4.Exit

Enter your choice:1

Enter the item :10

1.Insertion

2.Deletion

3.Display

4.Exit

Enter your choice:1

Enter the item :20

1.Insertion

2.Deletion

3.Display

4.Exit

Enter your choice:1

Enter the item :30

1.Insertion

2.Deletion

3.Display

4.Exit

Enter your choice:1

Enter the item :40

1.Insertion

2.Deletion

3.Display

4.Exit

Enter your choice:3

The elements are :

40

30

20

10

1.Insertion

2.Deletion

3.Display

4.Exit

Enter your choice:2

Deleted element is : 10

1.Insertion

2.Deletion

3.Display

4.Exit

Enter your choice:3

The elements are :

40

30

20

1.Insertion

2.Deletion

3.Display

4.Exit

Enter your choice:4

Ex:4a

Aim

POLYNOMIAL MANIPULATION

To implement polynomial manipulation using doubly linked lists.

Algorithm

POLYADD(POLY1: POLY2:POLY)

HEAD:POLY

Step 1: Assign HEAD+=NULL

Step2: While (POLY !=null)

Step3: HEAD=INSERTNODE(HEAD,COPYNODE,(POLY1,1))

Step4: POLY1=POLY1_NEXT

Step5: [End of Step2 while structure]

Step6: While(POLY2 1=NULL)

Step7: HEAD =INSERTNODE(HEAD,COPYNODE(POLY2,1))

Step8: POLY2=POLY2_NEXT

Step9: [End of Step 6 while Structure]

Step10: Return HEAD

END POLYADD()

Algorithm for polynomial subtraction

POLYSUB(POLY1:POLY, POLY2:POLY)

HEAD:POLY

Step1: Assign HEAD=NULL

Step2: While(POLY1!=NULL)

Step3: HEAD=INSERTNODE(HEAD,COPYNODE(POLY1,1))

Step4: POLY1=POLY1_ NEXT

Step5: [End of Step2 while Structure]

Step6:While(POLY2!=NULL)

Step7: HEAD=INSERTNODE(HEAD,COPYNODE(POLY2,1))

Step8: POLY2=POLY2_NEXT

Step9: [End of Step 6 While Structure]

Step10: Return HEAD

END POLYSUB()

PROGRAM

#include<malloc.h>

#include<conio.h>

struct link

{

int coeff;

int pow;

struct link *next;

};

struct link *poly1=NULL,*poly2=NULL,*poly=NULL;

void create(struct link *node)

{

char ch;

do

{

printf("\nEnter the coefficient :");

scanf("%d",&node>

coeff);

printf("\nEnter the power :");

scanf("%d",&node>

pow);

node>

next=(struct link *)malloc(sizeof(struct link));

node=node>

next;

node>

next=NULL;

printf("\nContinue??? (Y/N) :");

ch=getch();

}while(ch=='y' || ch=='Y');

}

void display(struct link *node)

{

while(node>

next!=NULL)

{

printf("%dx^%d",node>

coeff,node>

pow);

node=node>

next;

if(node>

next!=NULL)

printf(" + ");

}

}

void polyadd(struct link *poly1,struct link *poly2,struct link *poly)

{

while(poly1>

next && poly2>

next)

{

if(poly>

pow > poly2>

pow)

{

poly>

pow=poly1>

pow;

poly>

coeff=poly1>

coeff;

poly1=poly1>

next;

}

else if(poly1>

pow < poly2>

pow)

{

poly>

pow=poly2>

pow;

poly>

coeff=poly2>

coeff;

poly2=poly2>

next;

}

else

{

poly>

pow=poly1>

pow;

poly>

coeff=poly1>

coeff+poly2>

coeff;

poly1=poly1>

next;

poly2=poly2>

next;

}

poly>

next=(struct link *)malloc(sizeof(struct link));

poly=poly>

next;

poly>

next=NULL;

}

while(poly1>

next||poly2>

next)

{

if(poly1>

next)

{

poly>

pow=poly1>

pow;

poly>

coeff=poly1>

coeff;

poly1=poly1>

next;

}

if(poly2>

next)

{

poly>

pow=poly2>

pow;

poly>

coeff=poly2>

coeff;

poly2=poly2>

next;

}

poly>

next=(struct link *)malloc(sizeof(struct link));

poly=poly>

next;

poly>

next=NULL;

}

}

void main()

{

poly1=(struct link *)malloc(sizeof(struct link));

poly2=(struct link *)malloc(sizeof(struct link));

poly=(struct link *)malloc(sizeof(struct link));

clrscr();

printf("\nEnter the first polynomial::");

create(poly1);

printf("\nFirst polynomial is :: \n");

display(poly1);

printf("\nEnter the second polynomial::");

create(poly2);

printf("\nSecond polynomial is :: \n");

display(poly2);

polyadd(poly1,poly2,poly);

printf("\nAddition of the two polynomials::");

display(poly);

getch();
}

OUTPUT

Enter the first polynomial:

Enter the coefficient :5

Enter the power :3

Continue??? (Y/N) :Y

Enter the coefficient :3

Enter the power :2

Continue??? (Y/N) :

First polynomial is ::

5x^3 + 3x^2

Enter the second polynomial::

Enter the coefficient :7

Enter the power :3

Continue??? (Y/N) :

Second polynomial is ::

7x^3

Addition of the two polynomials::12x^3 + 3x^2

Ex: 4b INFIX TO POSTFIX CONVERSION

Aim

To implement infix to postfix conversion using stack.

Algorithm

Step 1. Push left parenthesis onto STACK and add right parenthesis at the end of Q.

Step 2. Scan Q from left to right and repeat step 3 to 6 for each element of Q until the STACK is

empty.

Step 3. If an operand is encountered add it to P.

Step 4. If a left parenthesis is encountered push it onto the STACK.

Step 5. If an operator is encountered, the Repeatedly pop from STACK and add to P each

operator which has same precedence as or higher precedence than the operator

encountered.Push the encountered operator onto the STACK.

Step 6. If a right parenthesis is encountered, then Repeatedly pop from the STACK and add to P

each operator until a left parenthesis is encountered.Remove the left parenthesis; do not add it

to P.

Step 7. Exit

PROGRAM

include<stdio.h>

char stack[20];

int top = -1;

void push(char x)

{

stack[++top] = x;

}

char pop()

{

if(top == -1)

return -1;

else

return stack[top--];

}

int priority(char x)

{

if(x == '(')

return 0;

if(x == '+' || x == '-')

return 1;

if(x == '*' || x == '/')

return 2;

}

main()

{

char exp[20];

char *e, x;

printf("Enter the expression :: ");

scanf("%s",exp);

e = exp;

while(*e != '\0')

{

if(isalnum(*e))

printf("%c",*e);

else if(*e == '(')

push(*e);

else if(*e == ')')

{

while((x = pop()) != '(')

printf("%c", x);

}

else

{

while(priority(stack[top]) >= priority(*e))

printf("%c",pop());

push(*e);

}

e++;

}

while(top != -1)

{

printf("%c",pop());

}

}

OUTPUT

Enter the expression :: a+b*c

abc*+

EX.N0. 5 BINARY TREE

Aim:

To write a c program for Implementation of binary tree.

Algorithm:

1. Declare pointer right and left

2. Create a structure for a tree contains left pointer and right pointer.

3. Insert an element is by checking the top node and the leaf node and the operation will be

performed.

4. Deleting an element contains searching the tree and deleting the item.

5. Display the Tree elements.

PROGRAM

#include<stdlib.h>

#include<stdio.h>

struct bin_tree {

int data;

struct bin_tree * right, * left;

};

typedef struct bin_tree node;

void insert(node ** tree, int val)

{

node *temp = NULL;

if(!(*tree))

{

temp = (node *)malloc(sizeof(node));

temp->left = temp->right = NULL;

temp->data = val;

*tree = temp;

return;

}

if(val < (*tree)->data)

{

insert(&(*tree)->left, val);

}

else if(val > (*tree)->data)

{

insert(&(*tree)->right, val);

}

}

void print_preorder(node * tree)

{

if (tree)

{

printf("%d\n",tree->data);

print_preorder(tree->left);

print_preorder(tree->right);

}

}

void print_inorder(node * tree)

{

if (tree)

{

print_inorder(tree->left);

printf("%d\n",tree->data);

print_inorder(tree->right);

}

}

void print_postorder(node * tree)

{

if (tree)

{

print_postorder(tree->left);

print_postorder(tree->right);

printf("%d\n",tree->data);

}

}

void deltree(node * tree)

{

if (tree)

{

deltree(tree->left);

deltree(tree->right);

free(tree);

}

}

node* search(node ** tree, int val)

{

if(!(*tree))

{

return NULL;

}

if(val < (*tree)->data)

{

search(&((*tree)->left), val);

}

else if(val > (*tree)->data)

{

search(&((*tree)->right), val);

}

else if(val == (*tree)->data)

{

return *tree;

}

}

void main()

{

node *root;

node *tmp;

//int i;

root = NULL;

/* Inserting nodes into tree */

insert(&root, 9);

insert(&root, 4);

insert(&root, 15);

insert(&root, 6);

insert(&root, 12);

insert(&root, 17);

insert(&root, 2);

/* Printing nodes of tree */

printf("Pre Order Display\n");

print_preorder(root);

printf("In Order Display\n");

print_inorder(root);

printf("Post Order Display\n");

print_postorder(root);

/* Search node into tree */

tmp = search(&root, 4);

if (tmp)

{

printf("Searched node=%d\n", tmp->data);

}

else

{

printf("Data Not found in tree.\n");

}

/* Deleting all nodes of tree */

deltree(root);

}

OUTPUT

Pre Order Display

9

4

2

6

15

12

17

In Order Display

2

4

6

9

12

15

17

Post Order Display

2

6

4

12

17

15

9

Searched node=4

EX: 6 BINARY SEARCH TREE

Aim:

To write a c program for binary search tree.

Algorithm:

1. Declare function add(),search(),findmin().find(),findmax(),Display().

2. Create a structure for a tree contains left pointer and right pointer.

3. Insert an element is by checking the top node and the leaf node and the operation will be

performed.

4. Deleting an element contains searching the tree and deleting the item.

5. display the Tree elements.

PROGRAM

#include<stdio.h>

#include<stdlib.h>

#include<conio.h>

struct searchtree

{

}*root;

int element;

struct searchtree *left,*right;

typedef struct searchtree *node;

typedef int ElementType;

node insert(ElementType, node);

node delete(ElementType, node);

void makeempty();

node findmin(node);

node findmax(node);

node find(ElementType, node);

void display(node, int);

void main()

{

int ch;

ElementType a;

node temp;

makeempty();

while(1)

{

printf("\n1. Insert\n2. Delete\n3. Find min\n4. Find max\n5. Find\n6.

Display\n7. Exit\nEnter Your Choice : ");

scanf("%d",&ch);

switch(ch)

{

case 1:

case 2:

case 3:

printf("Enter an element : ");

scanf("%d", &a);

root = insert(a, root);

break;

printf("\nEnter the element to delete : ");

scanf("%d",&a);

root = delet(a, root);

break;

printf("\nEnter the element to search : ");

scanf("%d",&a);

temp = find(a, root);

if (temp != NULL)

printf("Element found");

case 4:

else

break;

printf("Element not found");

temp = findmin(root);

if(temp==NULL)

printf("\nEmpty tree");

case 5:

else

break;

printf("\nMinimum element : %d", temp->element);

temp = findmax(root);

if(temp==NULL)

printf("\nEmpty tree");

case 6:

else

break;

printf("\nMaximum element : %d", temp->element);

if(root==NULL)

printf("\nEmpty tree");

case 7:

default:

else

break;

exit(0);

display(root, 1);

printf("Invalid Choice");

}

}

}

node insert(ElementType x,node t)

{

if(t==NULL)

{

}

else

{

}

return t;

}

t = (node)malloc(sizeof(node));

t->element = x;

t->left = t->right = NULL;

if(x < t->element)

t->left = insert(x, t->left);

else if(x > t->element)

t->right = insert(x, t->right);

node delet(ElementType x,node t)

{

node temp;

if(t == NULL)

printf("\nElement not found");

else

{

if(x < t->element)

t->left = delet(x, t->left);

else if(x > t->element)

t->right = delet(x, t->right);

else

{

if(t->left && t->right)

{

temp = findmin(t->right);

t->element = temp->element;

t->right = delet(t->element,t->right);

}

else if(t->left == NULL)

t=t->right;

}

}

return t;

}

else

t=t->left;

void makeempty()

{

root = NULL;

}

node findmin(node temp)

{

if(temp == NULL || temp->left == NULL)

return temp;

return findmin(temp->left);

}

node findmax(node temp)

{

if(temp==NULL || temp->right==NULL)

return temp;

return findmin(temp->right);

}

node find(ElementType x, node t)

{

if(t==NULL) return NULL;

if(x<t->element) return find(x,t->left);

if(x>t->element) return find(x,t->right);

return t;

}

void display(node t,int level)

{

int i;

if(t)

{

}

}

display(t->right, level+1);

printf(“\n”);

for(i=0;i<level;i++)

printf(" ");

printf("%d", t->element);

display(t->left, level+1);

OUTPUT

1. Insert

2. Delete

3. Find

4. Find Min

5. Find Max

6. Display

7. Exit

Enter your Choice : 1

Enter an element : 10

1. Insert

2. Delete

3. Find

4. Find Min

5. Find Max

6. Display

7. Exit

Enter your Choice : 1

Enter an element : 20

1. Insert

2. Delete

3. Find

4. Find Min

5. Find Max

6. Display

7. Exit

Enter your Choice : 1

Enter an element : 5

1. Insert

2. Delete

3. Find

4. Find Min

5. Find Max

6. Display

7. Exit

Enter your Choice : 4

The smallest Number is 5

1. Insert

2. Delete

3. Find

4. Find Min

5. Find Max

6. Display

7. Exit

Enter your Choice : 3

Enter an element : 100

Element not Found

1. Insert

2. Delete

3. Find

4. Find Min

5. Find Max

6. Display

7. Exit

Enter your Choice : 2

Enter an element : 20

1. Insert

2. Delete

3. Find

4. Find Min

5. Find Max

6. Display

7. Exit

Enter your Choice : 6

5

10

1. Insert

2. Delete

3. Find

4. Find Min

5. Find Max

6. Display

7. Exit

Enter your Choice : 7

Ex.no.7

Date:

Aim:

IMPLEMENTATION OF AVL TREES

To write a C program to perform implementation of AVL tree.

ALGORITHM

The following two cases are possible-

Case-01:

 After the insertion, the balance factor of each node is either 0 or 1 or -1.

 In this case, the tree is considered to be balanced.

 Conclude the operation.

 Insert the next element if any.



Case-02:

 After the insertion, the balance factor of at least one node is not 0 or 1 or -1.

 In this case, the tree is considered to be imbalanced.

 Perform the suitable rotation to balance the tree.

 After the tree is balanced, insert the next element if any.

PROGRAM

#include<conio.h>

#include<stdio.h>

typedef enum {FALSE,TRUE}bool;

struct node

{

int info;

int balance;

struct node *lchild;

struct node *rchild;

}*root;

struct node *search(struct node *ptr,int info)

{

if(ptr!=NULL)

if(info<ptr>

info)

ptr=search(ptr>

lchild,info);

else if(info>ptr>

info)

ptr=search(ptr>

rchild,info);

return (ptr);

}

struct node *insert(int info,struct node *pptr,int *ht_inc)

{

struct node *aptr;

struct node *bptr;

if(pptr==NULL)

{

pptr=(struct node *)malloc(sizeof(struct node));

pptr>

info=info;

pptr>

lchild=NULL;

pptr>

rchild=NULL;

pptr>

balance=0;

*ht_inc=TRUE;

return(pptr);

}

if(info<pptr>

info)

{

pptr>

lchild=insert(info,pptr>

lchild,ht_inc);

if(*ht_inc==TRUE)

{

switch(pptr>

balance)

{

case 1:

pptr>

balance=0;

*ht_inc=FALSE;

break;

case 0:

pptr>

balance=1;

break;

case 1:

aptr=pptr>

lchild;

if(aptr>

balance==1)

{

printf("Left to Left Rotation\n");

pptr>

lchild=aptr>

rchild;

aptr>

rchild=pptr;

pptr>

balance=0;

aptr>

balance=0;

pptr=aptr;

}

else

{

printf("Left to Right Rotation\n");

bptr=aptr>

rchild;

aptr>

rchild=bptr>

lchild;

bptr>

lchild=aptr;

pptr>

lchild=bptr>

rchild;

bptr>

rchild=pptr;

if(bptr>

balance==1)

pptr>

balance=1;

else

pptr>

balance=0;

if(bptr>

balance==1)

aptr>

balance=1;

else

aptr>

balance=0;

bptr>

balance=0;

pptr=bptr;

}

*ht_inc=FALSE;

}

}

}

if(info>pptr>

info)

{

pptr>

rchild=insert(info,pptr>

rchild,ht_inc);

if(*ht_inc==TRUE)

{

switch(pptr>

balance)

{

case 1:

pptr>

balance=0;

*ht_inc=FALSE;

break;

case 0:

pptr>

balance=1;

break;

case 1:

aptr=pptr>

rchild;

if(aptr>

balance==1)

{

printf("Right to Right Rotation\n");

pptr>

rchild=aptr>

lchild;

aptr>

lchild=pptr;

pptr>

balance=0;

aptr>

balance=0;

pptr=aptr;

}

else

{

printf("Right to Left Rotation\n");

bptr=aptr>

lchild;

aptr>

lchild=bptr>

rchild;

bptr>

rchild=aptr;

pptr>

rchild=bptr>

lchild;

bptr>

lchild=pptr;

if(bptr>

balance==1)

pptr>

balance=1;

else

pptr>

balance=0;

if(bptr>

balance==1)

aptr>

balance=1;

else

aptr>

balance=0;

bptr>

balance=0;

pptr=bptr;

}

*ht_inc=FALSE;

}

}

}

return (pptr);

}

main()

{

bool ht_inc;

int info;

int choice;

clrscr();

root=(struct node *)malloc(sizeof(struct node));

root=NULL;

printf("1.Insert\n2.Display\n3.Exit\n");

while(1)

{

printf("Enter your choice :");

scanf("%d",&choice);

switch(choice)

{

case 1:

printf("Enter the value to be inserted ::");

scanf("%d",&info);

if(search(root,info)==NULL)

root=insert(info,root,&ht_inc);

else

printf("Duplicate value ignored\n");

break;

case 2:

if(root==NULL)

{

printf("Tree is empty");

continue;

}

printf("Tree is \n");

display(root,1);

printf("\n\n");

printf("Inorder Traversal :: ");

inorder(root);

printf("\n");

break;

default:

printf("Invalid Choice !!!");

exit(0);

}

}

}

display(struct node *ptr,int level)

{

int i;

if(ptr!=NULL)

{

display(ptr>

rchild,level+1);

printf("\n");

for(i=0;i<level;i++)

printf("");

printf("%d",ptr>

info);

display(ptr>

lchild,level+1);

}

}

inorder(struct node *ptr)

{

if(ptr!=NULL)

{

inorder(ptr>

lchild);

printf("%d ",ptr>

info);

inorder(ptr>

rchild);

}

}

OUTPUT

1.Insert

2.Display

3.Exit

Enter your choice :1

Enter the value to be inserted ::15

Enter your choice :1

Enter the value to be inserted ::12

Enter your choice :1

Enter the value to be inserted ::24

Enter your choice :1

Enter the value to be inserted ::6

Enter your choice :2

Tree is

24

15

12

6

Inorder Traversal :: 6 12 15 24

Enter your choice :3

Ex.no.:8 PRIORITY QUEUE USING HEAP

Aim:

To implement priority queue using Heap in C program.

Algorithm:

Step 1: [Include necessary header files]

Step 2: [Define maxsize as 15]

Step 3: [Declare necessary variables]

Step 4: READ option, opt

IF opt is 1 THEN CALL INSERT()

IF opt is 2 THEN CALL DELMAX()

IF opt is 3 THEN CALL DIS()

Step 5: [END OF MAIN FUNCTION]

Algorithm For INSERT()

Step 1: I ne1+1

Step 2: IF (I MAXSIZE)

WRITE (“ Heap size exceeded”)

RETURN FALSE

IF ((I> 1) && (arraysize [i/2]< item))

array[I] array[i/2]

I I/2

Array[I] item

RETURN TRUE

Algorithm For DELMAX()

Step 1: IF (!nel)

WRITE (“HEAP IS EMPTY”)

ELSE

*item array [I]

Array[i] array [nel]

CALL adjust (array,I,nel)

PROGRAM

#include<stdio.h>

#include<stdlib.h>

#include<conio.h>

#include<malloc.h>

typedef struct heapstruct *pqueue;

struct heapstruct

{

int capacity;

int size;

int *elements;

};

void insert(int,pqueue);

pqueue initialize(int);

int deletemin(pqueue);

int isfull(pqueue);

int isempty(pqueue);

void display(pqueue);

void main()

{

pqueue heap;

int i,max,ele,ch,t;

clrscr();

printf("\nEnter the maximum no.of elements in the priority queue:");

scanf("%d",&max);

heap=initialize(max);

do

{

printf("\nMENU\n");

printf("\n1. Insertion\n");

printf("\n2.DeleteMin\n");

printf("\n3. Display\n");

printf("\n4. Exit\n");

printf("\nEnter your choice:");

scanf("%d",&ch);

switch(ch)

{

case 1: printf("\nEnter the element to be inserted:");

scanf("%d",&ele);

insert(ele,heap);

printf("\nThe element is inserted");

break;

case 2: t=deletemin(heap);

printf("\nThe minimum element %d is deleted\n",t);

break;

case 3: printf("\nThe elements in the HEAP are:");

display(heap);

break;

case 4: exit(0);

break;

}

}while(ch<4);

getch();

}

pqueue initialize(int max)

{

pqueue h;

if(max<3)

{

printf("\nPriority queue size is too small\n");

exit(0);

}

h=(heapstruct*)malloc(sizeof(struct heapstruct));

if(h==NULL)

exit(0);

h>

capacity=max;

h>

size=0;

return h;

}

void insert(int x,pqueue h)

{

int i;

if(isfull(h))

{

printf("\nPriority queue is full");

return;

}

if(h>

size==0)

{

h>

elements[1]=x;

h>

size++;

}

else

{

for(i=++h>

size;h>

elements[i/2]>x;i/=2)

h>

elements[i]=h>

elements[i/2];

h>

elements[i]=x;

}

}

int deletemin(pqueue h)

{

int i,child,minelement,lastelement;

if(isempty(h))

printf("\nPriority queue is empty");

exit(0);

}

minelement=h>

elements[1];

lastelement=h>

elements[h>

size]

;

for(i=1;i*2<=h>

size;i=child)

{

child=i*2;

if(child!=h>

size&&h>

elements[child+1]<h>

elements[child])

child++;

if(lastelement>h>

elements[child])

h>

elements[i]=h>

elements[child];

else

break;

}

h>

elements[i]=lastelement;

return minelement;

}

void display(pqueue h)

{

int i;

for(i=1;i<=h>

size;i++)

printf("\n%d",h>

elements[i]);

}

int isfull(pqueue h)

{

if(h>

size==h>

capacity)

return 1;

else

return 0;

}

int isempty(pqueue h)

{

if(h>

size==0)

return 1;

else

return 0;

}

OUTPUT

Enter the maximum no.of elements in the priority queue:5

MENU

1. Insertion

2.DeleteMin

3. Display

4. Exit

Enter your choice:1

Enter the element to be inserted:67

The element is inserted

MENU

1. Insertion

2.DeleteMin

3. Display

4. Exit

Enter your choice:1

Enter the element to be inserted:24

The element is inserted

MENU

1. Insertion

2.DeleteMin

3. Display

4. Exit

Enter your choice:1

Enter the element to be inserted:35

The element is inserted

MENU

1. Insertion

2.DeleteMin

3. Display

4. Exit

Enter your choice:3

The elements in the HEAP are:

24

67

35

MENU

1. Insertion

2.DeleteMin

3. Display

4. Exit

Enter your choice:2

The minimum element 24 is deleted

MENU

1. Insertion

2.DeleteMin

3. Display

4. Exit

Enter your choice:3

The elements in the HEAP are:

35

67

Enter your choice:4

Ex no 9 GRAPH TRAVERSAL USING DEPTH -FIRST SEARCH

Algorithm :

Step 1: Choose any node in the graph . Designate it as the search node and mark it as vivited.

Step 2: Using the adjacency matrix of the graph, find a node adjacent to the search node that has

not been visited yet. Designate this as the new search node and mark it as visited.

Step 3: Repeat step 2 using t he new search node. If no nodes satisfying(2) can be found, return to

the previous search node and continue from there.

Step 4: When a return to the previous search in(3) is impossible,the serach from the originally

choosen search node is complete.

Step 5: If the graph still contains unvisited nodes,choose any node that has not been visited and

repeat step(1) through(4).

PROGRAM

#include<stdio.h>

#include<conio.h>

int a [10][10],visited[10].n;

void main()

{

 int i,j;

 void search from(int);

 clrscr();

 printf("enter the no. of nodes\n");

 scanf("%d",&n);

 printf("enter the adjacency matrix\n");

for(i=1;<=n;i++)

for(j=1;<=n;j++)

scanf("%d",&a[i][j]);

for(i=1;i<=n;i++)

visited[i]=0;

printf("Depth First Path:");

for(i=1;i<=n;i++)

if(visited[i]==0)

searchfrom(i);

}

void search from(int k)

{

 int i;

 printf("%d\t",k);

 visited[k]=1;

 for(i=1;i<=n;i++)

 if(visited[i]==0)

 searchfrom(i);

 return;

}

OUTPUT

 Enter the no. of nodes

4

Enter the adjacency matrix

0 1 0 1

0 0 1 1

0 0 0 1

0 0 0 0

Depth First Path

1 2 3 4

Ex.no.10

Aim

DIJKSTRA’S ALGORITHM

To implement Dijkstra’s algorithm to find the shortest path.

Algorithm

Step1: [Include all the header files]

Step2: Call allSelected()

Step3: Call Shortpath()

Step4: Access the functions from main

Step5: End

Algorithm For ALLSELECTED()

Step1: Initialise i=0

Step2: Check whether i<max

Step3: Check whether Selected[i]=0

Return 0

Step4: Else Return 1

Step5: Return

Algorithm For SHORTPATH()

Step1: Initialise i=0 , Check i<max

Distance[i]=INFINITE

Step2: Assign selected[current].distance[0]=0,

Current=0

Step3: While(!allSelected(Selected))

Perform(Selected[i]= =0)

Current=k

Selected[current]=1

Print k

PROGRAM

#include<stdio.h>

#include<conio.h>

www.vidyarthiplus.com

www.vidyarthiplus.com

#define max 4

#define INFINITE 998

int allselected(int *selected)

{

int i;

for(i=0;i<max;i++)

if(selected[i]==0)

return 0;

return 1;

}

void shortpath(int cost[][max],int *preceed,int *distance)

{

int selected[max]={0};

int current=0,i,k,dc,smalldist,newdist;

for(i=0;i<max;i++)

distance[i]=INFINITE;

selected[current]=1;

distance[0]=0;

current=0;

while(!allselected(selected))

{

smalldist=INFINITE;

dc=distance[current];

for(i=0;i<max;i++)

{

if(selected[i]==0)

{

newdist=dc+cost[current][i];

if(newdist<distance[i])

{

distance[i]=newdist;

preceed[i]=current;

}

if(distance[i]<smalldist)

{

smalldist=distance[i];

k=i;

}

}}

current=k;

selected[current]=1;

}

}

int main()

{

int

cost[max][max]={{INFINITE,2,4,INFINITE},{2,INFINITE,1,5},{4,1,INFINITE,2},{INFINITE

,5,2,INFINITE}};

int preceed[max]={0},i,distance[max];

clrscr();

shortpath(cost,preceed,distance);

for(i=0;i<max;i++)

{

printf("The shortest path from 0 to %d is ",i);

printf("%d\n",distance[i]);

}

return 0;

getch();

}

OUTPUT

The shortest path from 0 to 0 is 0

The shortest path from 0 to 1 is 2

The shortest path from 0 to 2 is 3

The shortest path from 0 to 3 is 5

EX NO 11(A) IMPLEMENTATION OF SEARCHING ALGORITHM

Algorithm :

 Step 1: Read the elements of the list.

 Step 2: Sort the input list.

 Step 3: Find the mid value.

 Step 4: Look at the element in the middle. If the key is equal to that, the search is finished.

 Step 5: If the key is less than the middle element, do a binary search on the first half.

 Step 6: If it's greater, do a binary search of the second half.

PROGRAM

#include<stdio.h>

#include<conio.h>

void main()

{

 int a[25],i,j,temp,s,n,low,mid,high;

 clrscr();

 printf("\nEnter the Limilt : ");

 scanf("%d",&n);

 printf("\n\nEnter the elements\n");

 for(i=0;i<n;i++)

 {

 scanf("%d",&a[i]);

 }

 for(i=0;i<n-1;i++)

 {

 for(j=0;j<n-1;j++)

 {

 if(a[j]>a[j+1])

 {

 temp=a[j];

 a[j]=a[j+1];

 a[j+1]=temp;

 }

 }

 }

 printf("\n\nSorted list");

 for(i=0;i<n;i++)

 {

 printf("\n%d",a[i]);

 }

 printf("\n\nEnter the elements to be searched : ");

 scanf("%d",&s);

 high=n-1;

 low=0;

 while(low<=high)

 {

 mid=(low+high)/2;

 if(s>a[mid])

 low=mid+1;

 else if(s<a[mid])

 high=mid-1;

 else if(s==a[mid])

 {

 printf("\n\nThe element %d is found",s);

 getch();

 exit(0);

 }

 }

 printf("\n\nThe element %d is not found",s);

 getch();

 }

OUTPUT

 Enter the elements

5

4

3

2

1

Sorted list

1

2

3

4

5

Enter the element to be searched : 5

The element 5 is found.

Ex no 11(b) IMPLEMENTATION SELECTION SORT

ALGORITHM:

1. Find the minimum value in the list

2. Swap it with the value in the first position

3. Repeat the steps above for the remainder of the list (starting at the second position and

advancing each time)

PROGRAM

#include<stdio.h>

#include<conio.h>

int n,i=0,j=0,t=0,k=0,a[30];

void main()

{

 clrscr();

 printf("\nEnter how many numbers you want to sort\n");

 scanf("%d",&n);

 printf("\nEntyer the numbers \n");

 for (i=0;i<n;i++)

 {

 scanf("%d",&a[i]);

 }

 for (i=1;i<n;i++)

 {

 printf("\n\nPASS %d-->",i);

 t=a[i];

 for(j=i-1;((j>=0)&&(t<a[j]));j--)

 a[j+1]=a[j];

 a[j+1]=t; //j decreases

 for(k=0;k<n;k++)

 printf("%d ",a[k]);

 }

 printf("\n\nThe sorted list is : ");

 for (j=0;j<n;j++)

 printf("%d ",a[j]);

getch();

}

OUTPUT

Enter how many elements you want to sort

5

Enter the numbers

5

4

3

2

1

PASS->1 1 5 4 3 2

PASS->2 1 2 5 4 3

PASS->3 1 2 3 5 4

PASS->4 1 2 3 4 5

Final sorted list is 1 2 3 4 5

Ex no 12 HASHING - COLLISION TECHNIQUE

ALGORITHM

1.Create an array of linked list(i.e) hash table.

2. take a key and a value to be stored in hash table as input.

3.Using the generated index extract the linked list sorted in that array index.

4.Incase of absence of a linked list, create one and insert a data item into it.

5. incase list exit search for the key in the linked list and add the data item at the end of the list.

6. To display all the element of hash table, linked list at each index is extracted and element are

read until we reach at its end.

7.TO remove a key from hash table we will first calculate its index and extract its linked list.

PROGRAM

#include <stdio.h>

#include <conio.h>

int tsize;

int hasht(int key)

{

 int i ;

 i = key%tsize ;

 return i;

}

//-------LINEAR PROBING-------

int rehashl(int key)

{

 int i ;

 i = (key+1)%tsize ;

 return i ;

}

//-------QUADRATIC PROBING-------

int rehashq(int key, int j)

{

 int i ;

 i = (key+(j*j))%tsize ;

 return i ;

}

void main()

{

 int key,arr[20],hash[20],i,n,s,op,j,k ;

 clrscr() ;

 printf ("Enter the size of the hash table: ");

 scanf ("%d",&tsize);

 printf ("\nEnter the number of elements: ");

 scanf ("%d",&n);

 for (i=0;i<tsize;i++)

 hash[i]=-1 ;

 printf ("Enter Elements: ");

 for (i=0;i<n;i++)

 {

 scanf("%d",&arr[i]);

 }

 do

 {

 printf("\n\n1.Linear Probing\n2.Quadratic Probing \n3.Exit \nEnter your option: ");

 scanf("%d",&op);

 switch(op)

 {

 case 1:

 for (i=0;i<tsize;i++)

 hash[i]=-1 ;

 for(k=0;k<n;k++)

 {

 key=arr[k] ;

 i = hasht(key);

 while (hash[i]!=-1)

 {

 i = rehashl(i);

 }

 hash[i]=key ;

 }

 printf("\nThe elements in the array are: ");

 for (i=0;i<tsize;i++)

 {

 printf("\n Element at position %d: %d",i,hash[i]);

 }

 break ;

 case 2:

 for (i=0;i<tsize;i++)

 hash[i]=-1 ;

 for(k=0;k<n;k++)

 {

 j=1;

 key=arr[k] ;

 i = hasht(key);

 while (hash[i]!=-1)

 {

 i = rehashq(i,j);

 j++ ;

 }

 hash[i]=key ;

 }

 printf("\nThe elements in the array are: ");

 for (i=0;i<tsize;i++)

 {

 printf("\n Element at position %d: %d",i,hash[i]);

 }

 break ;

 }

 }while(op!=3);

 getch() ;

}

 OUTPUT

Enter the size of the hash table: 10

Enter the number of elements: 8

Enter Elements: 72 27 36 24 63 81 92 101

1.Linear Probing

2.Quadratic Probing

3.Exit

Enter your option: 1

The elements in the array are:

 Element at position 0: -1

 Element at position 1: 81

 Element at position 2: 72

 Element at position 3: 63

 Element at position 4: 24

 Element at position 5: 92

 Element at position 6: 36

 Element at position 7: 27

 Element at position 8: 101

 Element at position 9: -1

1.Linear Probing

2.Quadratic Probing

3.Exit

Enter your option: 2

The elements in the array are:

 Element at position 0: -1

 Element at position 1: 81

 Element at position 2: 72

 Element at position 3: 63

 Element at position 4: 24

 Element at position 5: 101

 Element at position 6: 36

 Element at position 7: 27

 Element at position 8: 92

 Element at position 9: -1

M A D H A E N G I N E E R I N G C O L L E G E
(A Christian Minority Institution)

KUNDRATHUR, CHENNAI – 600 069

 Microprocessor and Microcontroller Lab Manual

 Name :

 Subject :

 Roll No. :

 Semester : Year:

6

FLOW CHART:

START

Get the first number in accumulator

Move the first number to register B

Get the second number in

Stop

INPUT & OUTPUT TABULATION:

Memory

Address

Input data Memory

Address

Output data

8200

8201

 8202

8200

8201

 8202

ADD the A and B Register contents

Store the result in memory from accumulator

7

Ex. No.: 1 A

Date : ADDITION OF TWO 8-BIT DATA WITHOUT CARRY

AIM:

To add two 8 bit numbers stored at consecutive memory location using 8085

microprocessor without carry.

APPARATUS REQUIRED:

 8085 microprocessor kit

 OPcode sheet

ALGORITHM:

1. Start the program by initializing memory pointer to data location.

2. Get the first number and store in accumulator.

3. Move the first number to register B.

4. Get second number and store in accumulator A.

5. Add two numbers and result is in accumulator A.

6. Store the result from accumulator to memory.

7. Stop the program.

PROGRAM:

ADDRESS LABEL PNEUMONIC OPCODE COMMENTS

8100 START LDA 8200 3A

Load the first number in accumulator from

Memory
8101 00

8102 82

8103 MOV B, A 47 Move the data from accumulator to B

8104 LDA 8201 3A
Load the Second number in accumulator

from Memory
8105 01

8106 82

8107 ADD B 80 Addition of B with A register values.

8108 STA 8202 32
Store the result from accumulator to

Memory
8109 02

810A 82

810B HLT 76 Stop the program

RESULT:

8

FLOWCHART:

START

GET FIRST NUMBER IN A

HAVE THE NUMBER TO REGISTAR “B”

GET THE SECOND NUMBER IN ACCUMULATOR

If There

is Carry

No Yes

STORE THE RESULT IN MEMORY

STOP

ADD A AND B REGISTER CONTENTS

INCREMENT C REGISTER

9

Ex. No.: 1 B

Date : ADDITION OF TWO 8-BIT DATA WITH CARRY

AIM:

To add two 8-bit numbers stored at consecutive memory location using 8085

microprocessor with carry.

APPARATUS REQUIRED:

 8085 microprocessor kit

 OPcode sheet

ALGORITHM:

1. Start the program by initializing the memory pointer to data location.

2. Get the first number or data in accumulator.

3. Move the first number to register B.

4. Get the second number in accumulator A.

5. Add two numbers and result is in accumulator A.

6. If carry is present, increment register C by one, otherwise go to next step.

7. Store the result in memory from accumulator and register C.

8. Stop the program.

PROGRAM:

ADDRESS LABEL PNEMONICS OPCODE COMMENTS

8100 START LDA 8200 3A

Load First Data in Accumulator A 8101 00

8102 82

8103 MOV B, A 47 Move Data from Accumulator To B

8104 LDA 8201 3A Load Second Data in Accumulator A

8105 01

8106 82

8107 MVI C,00 0E Clear C Register

8108 00

8109 ADD B 80 Addition of B With A

810A JNC LOOP D2
Jump to Loop , If Result does not have

Carry
810B 0E

810C 81

810D INR C 0C Increment C Register

810E LOOP STA 8202 32
Store the Result in Memory from

Accumulator
810F 02

8110 82

10

8111 MOV A,C 79
Move the Carry from C to

Accumulator & Store Carry in

Memory from Accumulator

8112 STA 8203 32

8113 03

8114 82

8115 HLT 76 Stop the Program

INPUT & OUTPUT TABULATION:

MEMORY

ADDRESS

INPUT DATA MEMORY

ADDRESS

OUTPUT

DATA

8200

8201

 8202

8203

8200

8201

 8202

8203

RESULT:

11

FLOW CHART:

Start

Get the first number in accumulator A

Move the first number to register B

Get the second number in accumulator A

Subtract the Values from B from

Stop

INPUT & OUTPUT TABULATION:

Memory

address

Input data Memory

address

Output data

8200

8201

8202

8200

8201

8202

Store the result in memory from accumulator

12

Ex. No.: 2 A

Date : SUBTRACTION OF TWO 8 BIT DATA WITHOUT CARRY

AIM:

To subtract two 8 bit data’s stored at memory location without carry using 8085

microprocessor

APPARATUS REQUIRED:

 8085 microprocessor kit

 OPcode

sheet ALGORITHM:

1. Start the program by initializing the memory pointer to data location

2. Get the first number from memory to accumulator

3. Move the first number to register B

4. Get the second number in accumulator from memory

5. Store the result in memory from accumulator

6. Stop the program

13

 PROGRAM:

ADDRESS LABEL MNEMONICS OPCODE COMMENTS

8100 START LDA 8200 3A Load the first data in accumulator A

from memory 8101 00

8102 82

8103 MOV B,A 47 Move the first data to register B form
accumulator A

8104 LDA 8201 3A Load the Second data in accumulator
A from memory

8105 01

8106 82

8107 SUB B 90 Subtract the value from B from A

8108 STA 8202 32 Store the result in memory from
accumulator

8109 02

810A 82

810B HLT 76 Stop the program

RESULT:

14

FLOWCHART:

START

Get the first number in Accumulator A

Move the first number to B register from

Get the second number in Accumulator

NO

If there is

a carry

Yes

Stop

Subtract the Values from B from A

Increment register C

Store the result in memory from accumulator

15

Ex. No.: 2 B

Date : SUBTRACTION OF TWO 8-BIT DATA WITH CARRY

AIM:

To subtract two 8-bit numbers stored at consecutive memory location using 8085.

APPARATUS REQUIRED:

 8085 microprocessor kit

 OPcode sheet

ALGORITHM:

1. Start the program by initializing the memory location to data pointer.

2. Get the first number from memory in accumulator.

3. Move the first number to register B.

4. Get the second number from memory in accumulator.

5. Subtract two numbers (B from A) and store it in accumulator.

6. Store the result in memory from accumulator.

7. Stop the program.

PROGRAM:

ADDRESS LABEL PNEUMONIC OPCODE COMMENTS

8100 START LDA 8200 3A Load the first data in

accumulator A from memory
8101 00

8102 82

8103 MOV B,A 47 Move data from A to B

8104 LDA 8201 3A Load the second data in

accumulator A from memory
8105 01

8106 82

8107 MVI C,00 0E Clear C register

8108 00

8109 SUB B 90 Subtract B from A

16

INPUT & OUTPUT TABULATION:

Memory
Address

Input data Memory
Address

Input data

8200

8201

 8202

8203

8200

8201

 8202

8203

17

810A JNC LOOP D2 Jump to location of the result

doesn’t have carry
810B 0E

810C 81

810D INRC 0C Increment C register

810E LOOP STA 8202 32 Store the result from accumulator

810F 02

8110 82

8111 MOV A,C 79 Move Borrow from C to A

8112 STA 8203 32 Store carry value from accumulator

8113 03

8114 82

8115 HLT 76 Stop the program

RESULT:

18

FLOW CHART:

START

Get the first number in HL Register

Move the first number to DE

Get the second number in HL Register

ADD the HL and DE Register

If There Is

Carry

No Yes

Increment C Register

Stop

Store the result in memory from HL and C reg.

19

Ex. No.: 3 A

Date : ADDITION OF TWO 16-BIT DATA

AIM:

To add two 16 bit numbers stored at consecutive memory location using 8085

microprocessor with carry.

APPARATUS REQUIRED:

 8085 microprocessor kit

 OPcode sheet

ALGORITHM:

1. Start the program by initializing memory pointer to data location.

2. Get the first number and store in HL register.

3. Move the first number to register DE register.

4. Get second number and store in HL register.

5. Add two numbers and result is in HL register and C register.

6. Store the result from HL & C register to memory.

7. Stop the program.

PROGRAM:

ADDRESS LABEL PNEMONICS OPCODE COMMENTS

8100 START MVI C,00 0E
Clear C Register

8101 00

8102 LHLD 8200 2A

Load First Data in HL register 8103 00

8104 82

8105 XCHG EB Move Data To DE register

8106 LHLD 8202 2A

Load Second Data in HL register 8107 02

8108 82

8109 DAD D 19 Add HL & DE registers

810A JNC LOOP D2
Jump to Loop , If Result does not have

Carry
810B 0E

810C 81

810D INR C 0C Increment C Register

810E LOOP SHLD 8300 22
Store the Result in Memory from HL

register
810F 00

8110 83

20

8111 MOV A,C 79

Move the Carry from C to

Accumulator & Store Carry in

Memory from Accumulator

8112 STA 8302 32

8113 03

8114 82

8115 HLT 76 Stop the Program

INPUT & OUTPUT TABULATION:

Memory

Address

Input data Memory

Address

Output data

8200

8201

 8300

8301

8202

8203

 8302

RESULT:

21

Ex. No.: 3 B

Date : SUBTRACTION OF TWO 16-BIT DATA

AIM:

To subtract two 16-bit numbers stored at consecutive memory location using 8085.

APPARATUS REQUIRED:

 8085 microprocessor kit

 OPcode sheet

ALGORITHM:

1. Start the program by initializing the memory location to data pointer.

2. Get the first number from memory in HL register.

3. Move the first number to DE register.

4. Get the second number from memory in HL register.

5. First Subtract Lower byte and then Higher byte with borrow.

6. If Borrow is present increment the B register.

7. Store the result in memory from HL & B register.

8. Stop the program.

PROGRAM:

ADDRESS LABEL PNEUMONIC OPCODE COMMENTS

8100 LXI B,0000 01 Clear B register

8101 00

8102 00

8103 LHLD 8200 2A Load the first data in HL register

from memory
8104 00

8105 82

8106 XCHG EB Move data to DE register

8107 LHLD 8202 2A Load the second data in HL
register from memory

8108 02

8109 82

22

FLOWCHART:

START

Get the first number in HL register

Move the first number to DE register

Get the second number in HL register

If there

is carry No

Yes

Stop

Subtract the lower byte

Subtract the Higher byte with Borrow

Increment register B

Store the result in memory from HL & B register

23

810A MOV A,E 7B Subtract lower bytes and move

lower byte result to L register.
810B SUB L 95

810C MOV L,A 6F

810D MOV A,D 7A Subtract higher bytes

810E SBB H 9C

810F JNC LOOP D2 Jump to location
doesn’t have carry

of the result

8110 13

8111 81

8112 INX B 03 Increment B register

8113 LOOP MOV H,A 67 Move higher byte result to H

register. Finally Store the result to

memory from HL register.
8114 SHLD 8300 22

8115 00

8116 83

8117 MOV A,B 78 Move borrow from B to A

8118 STA 8302 32 Store Borrow
accumulator

value from

8119 02

811A 83

811B HLT 76 Stop the program

INPUT & OUTPUT TABULATION:

Memory
Address

Input data Memory
Address

Input data

8200

8201

 8300

8301

8202

8203

 8302

RESULT:

24

FLOWCHART:

START

If Carry Flag =1 NO

Yes

Decrement C register by 1

 NO

If Zero Flag =0

 YES

Stop

Initialize D = 00 for Carry, A=00

Load the two input numbers and move to B and C

Add A and B register contents

 Increment D register by 1

Display result

Display carry

25

Ex. No.: 4 A

Date : MULTIPLICATION OF TWO 8- BIT DATA

AIM:

To multiply two 8-bit numbers stored at consecutive memory location using 8085

microprocessor.

APPARATUS REQUIRED:

 8085 microprocessor kit

 OPcode sheet

ALGORITHM:

1. Start the program and Initialize D = 00 for Carry, A=00

2. Load the memory address to HL register pair

3. Move the data to a B register

4. Get the second data and move into C register.

5. Add the two register B & C contents

6. If carry is present increment the D register by 1, Otherwise go to next step.

7. Decrement the C register by 1 and repeat the step 5 until C=0.

8. Store the value of product and carry in memory location

9. Terminate the program

PROGRAM:

ADDRESS LABEL PNEUMONIC OPCODE COMMENTS

8100 START MVI D,00 16 Initialize register D to 00 for carry.

8101 00

8102 MVI A,00 3E Initialize Accumulator content to 00

8103 00

8104 LXI H 8200 21 Get the first number in memory

8105 00

8106 82

8107 MOV B,M 46 Move the first number to B- register

8108 INX H 23 Increment memory by 1

8109 MOV C,M 4E Get the second number in C – register

810A LOOP ADD B 80 Add content of A register with B

26

INPUT & OUTPUT TABULATION:

Memory
Address

Input data Memory
Address

Output data

8200

8201

8202

8203

27

810B JNC NEXT D2 Jump no carry to NEXT

810C 0F

810D 81

810E INC D 14 Increment content of register D

810F NEXT DCR C 0D Decrement content of register C

8110 JNZ LOOP C2 Jump on no zero to LOOP

8111 0A

8112 81

8113 STA 8202 32 Store the result in memory

8114 02

8115 82

8116 MOV A,D 7A Move D to A

8117 STA 8303 32 Store the MSB of result in memory

8118 03

8119 82

811A HLT 76 Terminate the program

RESULT:

28

FLOW CHART:

Start

Initialize C = 00 for Carry,

NO

If carry NO

 YES

A A - B

Increment C by 1 until A&

Display C (quotient) of A

(Remainder)

Stop

Load the two input numbers and move to B and A reg.

Compare A and M

29

Ex. No.: 4 B

Date : DIVISION OF TWO 8-BIT DATA

AIM:

To perform the division of two 8-bit numbers using 8085 microprocessor.

APPARATUS REQUIRED:

 8085 microprocessor kit

 OPcode sheet

ALGORITHM:

1. Start the program by loading HL register pair with address of memory location.

2. Move the data to a register (B-register).

3. Get the second data and load into accumulator.

4. Compare the two numbers (A &B reg.) to check for carry, if carry present go to step 8.

5. Subtract the two numbers (A &B reg.).

6. Increment the value of C register for quotient.

7. If ZF=0, then repeat the step 4.

8. Store the value of remainder and Quotient in memory location.

9. Terminate the program.

PROGRAM:

ADDRESS LABEL PNEUMONIC OPCODE COMMENTS

8100 START LXI H, 8200 21

Get the first number in memory
8101 00

8102 82

8103 MOV B, M 46 Get the dividend in B – register

8104 MVI C,00 0E Clear C – register for quotient

8105 00

8106 INX H 23 Increment memory by 1

8107 MOV A,M 7E Get the divisor in A register

8108 NEXT CMP B B8 Compose A register with register B

8109 JC LOOP DA

Jump on a carry to loop

Subtract A – register from B – register

810A 11

810B 81

810C SUB B 90

30

INPUT & OUTPUT TABULATION:

Memory
Address

Input data Memory
Address

Output data

8200

8201

8202

8203

31

810D INR C 0C Increment content Of register C

810E JNZ NEXT C2 Jump no zero to NEXT label.

810F 08

8110 81

8111 LOOP STA 8202 32 Store the reminder in memory

8112 02

8113 82

8114 MOV A,C 79 Move C register value to Accumulator.

8115 STA 8203 32 Store the Quotient in memory

8116 03

8117 82

8118 HLT 76 Stop the program

RESULT:

32

FLOW CHART:

Start

Get the number of elements of array

Move the count value in B resister

If carry flag is set

NO

Move the values of memory to

 YES

If zero flag is not set

NO

YES

 Stop

Store the result in memory

from Accumulator

Decrement the counter

Increment the HL register memory Pointer

Move the first data in A register and decrement the count

Increment the HL pair

Compare the values of accumulator and memory

33

Ex. No.: 5 A

Date : SMALLEST NUMBER IN AN ARRAY OF DATA

AIM:

To find the smallest number in an array of datas using 8085 microprocessor

APPARATUS REQUIRED:

 8085 microprocessor kit

 OPcode sheet

ALGORITHM:

1. Load the address of the first element (count) of an array in HL pair.

2. Load the count and move it in to the B –register

3. Increment the HL pair as a pointer

4. Move the first data to A-register form memory which is pointed by HL pair.

5. Decrement the count (B reg.)

6. Increment the pointer (HL reg. pair)

7. Compare the content of memory addressed by HL pair with content of A-register

8. If carry =1 go for step 10 otherwise go to step-9

9. Move the content of memory addressed by HL pair to A-register

10. Decrement the count (B reg.)

11. Check for zero of the count if ZF=0 go to step 6 otherwise go to next step

12. Store the smallest data in memory from Accumulator.

PROGRAM:

ADDRESS LABEL MNEMONICS OPCODE COMMENTS

8100 Start LXI H, 8200 21

Set pointer for array. 8101 00

8102 82

8103 MOV B,M 46
Move the first data from memory to

B- reg (Count)

8104 INX H 23 Increment the HL pair

8105 MOV A,M 7E
Move the second data from memory

to accumulator.

8106 DCR B 05 Decrement the count

34

INPUT & OUTPUT TABULATION:

Memory
Address

Input data Memory
Address

Output data

8200 (count)

8300

8201

8202

8203

8204

8205

35

8107 INX H 23 Increment HL Pair

8108 CMP M BE Compare the content of memory with

accumulator

8109 JC AHEAD DA If CF=1, go to Label AHEAD,
otherwise go to next step.

810A OD

810B 81

810C MOV A,M 7E Set the new values at Large

810D AHEAD DCR B 05 Decrement the value of B

810E JNZ LOOP C2 Repeat the comparison till B= 0
(ie. ZF=1)

810F 07

8110 81

8111 STA 8300 32 Store the largest value in memory

from accumulator. 8112 00

8113 83

8114 HLT 76 Stop the program.

RESULT:

36

FLOW CHART:

Start

Get the number of elements of array

Move the count to B register

Increment the painter and get first data in A

Decrement the counter

YES

 If Carry

NO

Move the content of HL pair to A register

If

zero

YES

Stop

Share largest data in Memory

Increment the painter (HL pair)

Compare Memory with A – register

Decrement the counter

37

Ex. No.: 5 B

Date : LARGEST NUMBER IN AN ARRAY OF DATA

AIM:

To write and execute the program of largest in an array of data using 8085 microprocessor

APPARATUS REQUIRED:

 8085 microprocessor kit

 OPcode sheet

ALGORITHM:

1. Load the address of the first element (count) of an array in HL pair.

2. Load the count and move it in to the B –register

3. Increment the HL pair as a pointer

4. Move the first data to A-register form memory which is pointed by HL pair.

5. Decrement the count (B reg.)

6. Increment the pointer (HL reg. pair)

7. Compare the content of memory addressed by HL pair with content of A-register

8. If carry =0 go for step 10 otherwise go to step-9

9. Move the content of memory addressed by HL pair to A-register

10. Decrement the count (B reg.)

11. Check for zero of the count if ZF=0 go to step 6 otherwise go to next step

12. Store the largest data in memory from Accumulator.

PROGRAM:

INPUT & OUTPUT TABULATION:

ADDRESS LABEL PNEUMONIC OPCODE COMMENTS

8100 LXI H, 8200 21 Set Pointers for array

8101 00

8102 82

8103 MOV B,M 46 Move the first data from (count)

memory

8104 INX H 23 Increment the HL Pair

8105 MOV A,M 7E Move the second data from memory
to accumulator

8106 DCR B 05 Decrement the count

38

Memory
Address

Input data Memory
Address

Output
data

8200 (count)

8300

8201

8202

8203

8204

39

8107 LOOP INX H 23 Increment the HL pair

8108 CMP M BE Complements of memory with
accumulator

8109 JNC AHEAD D2 If A >M go to label AHEAD

810A 0D

810B 81

810C MOV A,M 7E Set the new values at large

810D AHEAD DCR B 05 Decrement the values of B

810E JNZ LOOP C2 Repeat the comparison till B = 0

810F 07

8110 81

8111 STA 8300 32 Store the largest value in memory
from accumulator

8112 00

8113 83

8114 HLT 76 Stop the program

RESULT:

40

FLOW CHART:

START

 IF CF=1

NO

YES

IF ZF=O

NO

YES

YES

 IF ZF=O

NO

STOP

DECREMENT C REG.

DECREMENT D by 1

ENTER DATA MEMORY

MOVE C TO D REG.

INCREMENT M

DISPLAY RESULT IN MEMORY

COMPARE A and M

MOVE M TO B

MOVE A TO M

DECREMENT M

MOVE B TO M

INTER THE ARRAY SIZE

MOVE M TO C REG.

DECREMENT C REG.

41

Ex. No.: 6 A

Date : ARRANGE AN ARRAY OF DATA IN ASCENDING ORDER

AIM:

To write a program to arrange an array of data in ascending order by using 8085

microprocessor.

APPARATUS REQUIRED:

 8085 microprocessor kit

 OPcode sheet

ALGORITHM:

1. Initialize the HL pair as memory pointer

2. Move the count to C-register

3. Decrement the count

4. Copy the count in D-register

5. Load the address of the element in HL pair

6. Move the first data in A- register from memory, which is pointed by HL pair.

7. Increment the HL pointer

8. Compare the content of the memory with Accumulator

9. If they are out of order exchange the contents of A register and memory

10. Decrement D-register content by 1

11. Repeat step 9 and10 till the value in D register becomes Zero

12. Decrement C-register content by 1

13. Repeat steps 4-12 till the value in C register becomes Zero

PROGRAM:

ADDRESS LABEL PNEMONICS OPCODE COMMENTS

8100 START LXI H, 8200 21 Set the pointes for array

8101 00

8102 82

8103 MOV C, M 4E Move the Count from Memory to
C reg.

8104 DCR C 0D Decrement the count (C reg.)

8105 REPEAT MOV D, C 51 Move the data in C to D register

8106 LXI H, 8201 21 Load the Pointer to load next data

8107 01

8108 82

42

INPUT & OUTPUT TABULATION:

Memory
Address

Input data Memory
Address

Output data

8200 (Count)

8201 8201

8202 8202

8203 8203

8204 8204

43

8109 LOOP MOV A ,M 7E Set the new value of large

810A INX H 23 Increment the HL pair.

810B CMP M BE Compare the content of memory
with Accumulator

810C JC SKIP DA If CF=1, then go to SKIP label.

810D 14

810E 81

810F MOV B,M 46

Exchange the contents of A

register and memory

8110 MOV M,A 77

8111 DCX H 2B

8112 MOV M,B 70

8113 INX H 23

8114 SKIP DCR D 15 Decrement the count(D reg.)

8115 JNZ LOOP C2 Check for ZF, if ZF = 0 then go to
LOOP label. 8116 09

8117 81

8118 DCR C 0D Decrement the count

8119 JNZ REPEAT C2 Check for ZF, if ZF = 0 then go to

REPEAT label. 811A 05

811B 81

811C HLT 76 Stop the program.

RESULT:

44

FLOW CHART:

START

IF CF=0

 NO

YES

IF ZF=O

NO

YES

DECREMENT C REG

YES

IF ZF=O

NO

STOP

.

DECREMENT D by 1

ENTER DATA MEMORY

MOVE C TO D REG.

INCREMENT M

DISPLAY RESULT IN MEMORY

COMPARE A and M

MOVE M TO B

MOVE A TO M

DECREMENT M

 MOVE B TO M

INTER THE ARRAY SIZE

MOVE M TO C REG.

DECREMENT C REG.

45

Ex. No.: 6 B

Date : ARRANGE AN ARRAY OF DATA IN DESCENDING ORDER

AIM:

To write a program to arrange an array of data in descending order by using 8085

microprocessor.

APPARATUS REQUIRED:

 8085 microprocessor kit

 OPcode sheet

ALGORITHM:

1. Initialize the HL pair as memory pointer

2. Move the count to C-register

3. Decrement the count

4. Copy the count in D-register

5. Load the address of the element in HL pair

6. Move the first data in A- register from memory, which is pointed by HL pair.

7. Increment the HL pointer

8. Compare the content of the memory with Accumulator

9. If they are out of order exchange the contents of A register and memory

10. Decrement D-register content by 1

11. Repeat step 9 and10 till the value in D register becomes Zero

12. Decrement C-register content by 1

13. Repeat steps 4-12 till the value in C register becomes Zero

PROGRAM:

ADDRESS LABEL MNEMONICS OPCODE COMMENTS

8100 START LXI H, 8200 21 Set the pointes for array

8101 00

8102 82

8103 MOV C, M 4E Move the Count from Memory to
C reg.

8104 DCR C 0D Decrement the count (C reg.)

8105 REPEAT MOV D, C 51 Move the data in C to D register

8106 LXI H, 8201 21 Load the Pointer to load next data

8107 01

8108 82

46

INPUT & OUTPUT TABULATION:

Memory
Address

Input data Memory
Address

Output data

8200 (Count)

8201 8201

8202 8202

8203 8203

8204 8204

47

8109 LOOP MOV A ,M 7E Set the new value of large

810A INX H 23 Increment the HL pair.

810B CMP M BE Compare the content of memory
with Accumulator

810C JNC SKIP D2 If CF=0, then go to SKIP label.

810D 14

810E 81

810F MOV B,M 46

Exchange the contents of A

register and memory

8110 MOV M,A 77

8111 DCX H 2B

8112 MOV M,B 70

8113 INX H 23

8114 SKIP DCR D 15 Decrement the count (D reg.)

8115 JNZ LOOP C2 Check for ZF, if ZF = 0 then go to
LOOP label. 8116 09

8117 81

8118 DCR C 0D Decrement the count

8119 JNZ REPEAT C2 Check for ZF, if ZF = 0 then go to

REPEAT label. 811A 05

811B 81

811C HLT 76 Stop the program.

RESULT:

48

FLOW CHART:

Star

Stop

Load A register and move to B register

Mask the upper nibble in A register

Call sub routine to get ASCII lower nibble into Hexa decimal lower nibble

Store it in memory

Move B to A register and mark lower nibble into Hexa decimal Upper nibble

Rotate upper to lower nibble

Call subroutine to get ASCII upper nibble

Store it in memory

49

Ex. No.: 7 A

Date : CODE CONVERSIONS - ASCII TO HEXA AIM:

To write and execute the program for convert ASCII to HEXA DECIMAL number using

8085 microprocessor.

APPARATUS REQUIRED:

 8085 microprocessor kit

 OPcode sheet

ALGORITHM:

1. Load the given data in A register

2. Move the content of A to B register

3. Mask the upper nibble of the hexadecimal number in A register

4. Call suborning to get ASCII of lower nibble into hexadecimal lower nibble

5. Store it in memory

6. Move B register value to A- register and mask the lower nibble

7. Rotate the upper nibble to lower nibble position

8. Call subroutine to get ASCII of upper nibble in to hexadecimal

9. Store it in memory

10. Terminate the program

PROGRAM:

Address Label Mnemonics Opcode Comments

8100 START LDA 8200 3A

Load accumulator 8101 00

8102 82

8103 MOV B,A 47 Move accumulator to B register

8104 ANI 0F E6 Mask the Upper nibble

8105 0F

8106 CALL SUB1 CD Call suborning to get ASCII of
lower nibble 8107 1A

8108 81

8109 STA 8201 32 Store ASCII of lower nibble in

memory 810A 01

810B 82

810C MOV A,B 78 Move B register to accumulator

50

Conversion Table for Hexadecimal, Decimal and ASCII

INPUT & OUTPUT TABULATION:

Memory

address
Input data

Memory

address
Output data

8200

8201

8202

 Hexa Decimal ASCII

30 48 0

31 49 1

32 50 2

33 51 3

34 52 4

35 53 5

36 54 6

37 55 7

38 56 8

39 57 9

41 65 A

42 66 B

43 67 C

44 68 A

45 69 B

46 70 C

47 71 A

48 72 B

Hexa Decimal ASCII

49 73 C

50 74 A

51 75 B

52 76 C

53 77 A

54 78 B

55 79 C

56 80 A

57 81 B

58 82 C

59 83 A

60 84 B

61 85 C

62 86 A

63 87 B

64 88 C

65 89 A

5A 90 B

51

810D ANI F0 E6 Mask the lower nibble

810E F0

810F RLC 07 Rotate left through Carry

8110 RLC 07

8111 RLC 07

8112 RLC 07

8113 CALL SUB1 CD Call suborning to get ASCII of

Upper nibble 8114 1A

8115 81

8116 STA 8202 32 Store ASCII of Upper nibble in

memory 8117 02

8118 82

8119 HLT 76 Stop the program

811A CPI 0A FE Compare A with immediate data

811B 0A

811C JC SKIP DA

Jump on carry to SKIP label 811D 21

811E 81

811F ADI 07 C6 Count the number , add

accumulator with 07 8120 07

8121 SKIP ADI 30 C6 Add accumulator with immediate
data 8122 30

8123 RET C9 Return to Main program

RESULT:

52

FLOW CHART

Start

YES
If carry is there

 NO

Subtract 07H from register

Store the result

Stop

Load data in A register

Compare the content of A with OAH

53

Ex. No.: 7 B

Date : CODE CONVERSION - HEXA TO ASCII

AIM:

To convert given character (HEXA) in to its equivalent ASCII using 8085 microprocessor

APPARATUS REQUIRED:

 8085 microprocessor kit

 OPcode sheet

ALGORITHM:

1. Load the given data in A-register

2. Subtract 30H from A- register

3. Compose the content of A-register with OAH

4. If A<0AH jump to step6, else proceed To next step

5. Subtract O7H from A-register
6. Store the result

7. Stop the program

PROGRAM:

Address Label Mnemonics OPcode Comments

8100 START LDA 8200 3A

Load the input data into the

accumulator
8101 00

8102 82

8103 SUI 30 D6 Subtract accumulator with
immediate data 8104 30

8105 CPI OA FE
Compare A with immediate data.

8106 0A

8107 JC SKIP DA

Jump on carry to SKIP label 8108 0C

8109 81

810A SUI 07 D6
Subtract accumulator with 07

810B 07

54

Conversion Table for Hexadecimal, Decimal and ASCII

INPUT & OUTPUT TABULATION:

Memory
Address

Input
data

Memory
Address

Output
data

8200

8201

 Hexa Decimal ASCII

30 48 0

31 49 1

32 50 2

33 51 3

34 52 4

35 53 5

36 54 6

37 55 7

38 56 8

39 57 9

41 65 A

42 66 B

43 67 C

44 68 A

45 69 B

46 70 C

47 71 A

48 72 B

Hexa Decimal ASCII

49 73 C

50 74 A

51 75 B

52 76 C

53 77 A

54 78 B

55 79 C

56 80 A

57 81 B

58 82 C

59 83 A

60 84 B

61 85 C

62 86 A

63 87 B

64 88 C

65 89 A

5A 90 B

55

810C SKIP STA 8201 32

Store the result in memory from

accumulator
810D 01

810E 82

810F HLT 76 Stop the Program

RESULT:

56

FLOW CHART:

START

INITIATE MEMORY POINTER

GET THE MSD

ADD LSD TO THE RESULT

STORE THE HEXA DATA IN MEMORY

STOP

MULTIPLY MSD BY TEN USING REPEATED

ADDITION

57

Ex. No.: 8 A

Date : CODE CONVERSION - BCD TO HEXA

AIM:

To convert two BCD numbers in memory to its equivalent HEXA number using 8085

microprocessor.

APPARATUS REQUIRED:

 8085 microprocessor kit

 OPcode sheet

ALGORITHM:

1. Initialize memory pointer to 8100H.

2. Load the most significant digit (MSD).

3. Multiply the MSD by ten using repeated addition.

4. Add the least significant digit (LSD) to the result obtained in previous step.

5. Store the HEXA data in memory.

PROGRAM:

Address Label Pneumonic Opcode Comments

8100 START LXI H,8150 21
Load the input data into the

accumulator
8101 50

8102 81

8103 MOVA,M 7E Move memory to accumulator

8104 ADD A 87
Add accumulator content with
Accumulator. Ie) MSD*2

8105 MOV B,A 47 Move Accumulator content to B

8106 ADD A 87 MSD is multiplied by 4

8107 ADD A 87 MSD is multiplied by 8

8108 ADD B 80 Add accumulator content with B reg.

8109 INX H 23 Increment the memory

810A ADD M 86 Add Accumulator and memory

810B INX H 23 Increment the memory

810C MOV M,A 77
Move the accumulator to memory for
result

810D HLT 76 Stop the program

58

INPUT & OUTPUT TABULATION:

Memory
Address

Input data
Memory
Address

Output data

8150

8151

8152

59

RESULT:

60

FLOW CHART:

START

INITIATE MEMORY POINTER

GET HEXA DECIMAL NUMBER IN C - REGISTER

ADJUST BCD IN EACH STEP

STORE THE BCD DATA IN MEMORY

STOP

REPEATED ADDITION A WITH 01 FOR C

NUMBER OF TIMES

61

Ex. No.: 8 B

Date : CODE CONVERSION - HEXA TO BCD

AIM:

To convert given HEXA decimal number into its equivalent BCD number using 8085

microprocessor.

APPARATUS REQUIRED:

 8085 microprocessor kit

 OPcode sheet

ALGORITHM:

1. Initialize memory pointer to 8100H

2. Get the hexadecimal number in C register

3. Perform repeated addition for C number of times

4. Adjust for BCD in each step

5. Store the BCD data in memory

PROGRAM:

Address Label Pneumonic Opcode Comments

8100 START LXI H, 8150 21

Initialize memory pointer for input
8101 50

8102 81

8103 MVI D,00 16
Clear D register for most significant byte

8104 00

8105 XRA A AF Clear accumulator

8106 MOV C,M 4E Get Hexadecimal input data from memory

8107 LOOP2 ADI 01 C6 Count the number One by one adjust BCD

count 8108 01

8109 DAA 27 Adjust accumulator for BCD

810A JNC LOOP1 D2

Jump on no carry to Loop1

Increment D register

Decrement C register

810B 0E

810C 81

810D INR D 14

810E LOOP1 DCR C OD

62

INPUT & OUTPUT TABULATION:

Memory
Address

Input

data

Memory
Address

Output

data

8150

8151

8152

810F JNZ LOOP2 C2

Jump on no zero to Loop2
8110 07

8111 81

8112 STA 8151 32

Store the least Significant byte in memory
8113 51

8114 81

8115 MOV A,D 7A Move D to accumulator

8116 STA 8152 32

Store the most Significant byte in memory
8117 52

8118 81

8119 HLT 76 Termite ate the program

RESULT:

63

Ex. No.: 9 A

Date : ADDITION OF TWO 8-BIT DATA

AIM:

To perform the arithmetic operation addition by using 8051 microcontroller.

APPARATUS REQUIRED:

 8051 microcontroller kit

 OPcode sheet

ALGORITHM:

1. Start the program

2. Get the Input data at the accumulator.

3. Add the adder data with the data which is already in accumulator.

4. Move the result to 8500 memory location.

5. If any carry is available then move 01 to R0 Register

6. Store the result in Memory

7. Stop the program

PROGRAM:

Address Label Pneumonic OPcode Comments

8100 START MOVA,09 74
Move 09 to accumulator

8101 09

8102 ADD A,04 24
Add 04 with accumulator

8103 04

8104 JNC L00P 50
On No carry Jump to 100p

8105 02

8106 MOV R0 , 01 78
Move R0 register into 01 for carry

8107 01

69

FLOW CHART:

Start

Move the data to accumulator

NO
If Carry

YES

Move 01 to R0 Register

Store the result in Memory

Store the carry in Memory

Stop

Add another data, with the data which is present in

accumulator.

Increment the memory

70

INPUT & OUTPUT TABULATION:

 Memory

Address
Input data

Memory

address
Output data

8101
8500

8103

8101

8500
8103

8108 LOOP MOV DPTP,#8500 90

Move the memory address to DPTR 8109 85

810A 00

810B MOVX @DPTR , A FO Store the sum in memory

810C INC DPTR A3 Increment DPTR

810D MOV A,RO E8 Move RO to A

810E MOVX @DPTR , A FO Store the Carry in memory

810F LOOP1 SJMP LOOP1 80 Stop the program

8110 FE

RESULT:

71

FLOW CHART:

Start

Move the input data to A Reg.

Move the result to 8500

Stop

INPUT & OUTPUT TABULATION:

Memory

Address
Input data

Memory

address
Output data

8101
8500

8103

8101
8500

8103

Subtract the given data from the data,

which is already in accumulator

72

Ex. No.: 9 B

Date : SUBTRACTION OF TWO 8-BIT DATA

AIM:

To subtract the two given number by using 8051 micro controller.

APPARATUS REQUIRED:

 8051 microcontroller kit

 OPcode sheet

ALGORITHM:

1. Start the program.

2. Get data to the accumulator.

3. Subtract another data from the data which is already stored in the accumulator.

4. Move the result to the memory 8500.

5. If any carry, than store it in accumulator.

6. Stop the program.

PROGRAM:

Address Label Pneumonic OPcode Comments

8100 START MOV A ,09 74 Move the data 09 to the

accumulator 8101 09

8102 SUBB A ,04 94 Subtract the data 04 with data in

accumulator 8103 04

8104 MOV DPTR, #8500 90

store the result in 8500 8105 85

8106 00

8107 MOV @DPTR , A FO Carry is stored

8108 LOOP STMP LOOP 80 Short jump

8109 FE Stop the program

RESULT:

73

FLOW CHART:

Start

Initialize the starting pointer

Move the input data –1 to A-register

Move the input data –2 to B-register

Load memory address to DTPR

Store the lower byte result in memory

Store the higher byte result in memory

Stop

INPUT& OUTPUT TABULATION:

MEMORY

ADDRESS

INPUT ----

DATA

MEMORY

ADDRESS

OUTPUT

DATA

8101

8104

8500

8501

8101

8104

8500

8501

Multiply B and A

Increment DPTR

74

Ex. No.: 10 A

Date : MULTIPLICATION OF TWO 8-BIT DATA

AIM:

To perform 8-bit multiplication by using 8051 microcontroller

APPARATUS REQUIRED:

 8051 microcontroller kit

 OPcode sheet

ALGORITHM:

1. Start the program.

2. Initialize the starting pointer.

3. Move the input data 1 to accumulator

4. Move the input data 2 to the B-register

5. Multiply both B and A

6. Load the memory address to DPTR and store the lower byte result.

7. Increment DPTR and move B to A.

8. Store the higher byte result

9. Stop the program

PROGRAM:

ADDRESS LABEL PNEUMONIC OPCODE COMMENTS

8100 START MOV A , #02 74 Move the input data 1 to
accumulator 8101 02

8102 MOV B , #03 75 Move the input data 2 to the
B-register 8103 F0

8104 03

8105 MUL A,B A4 Multiply the input data’s ie)
A and B

8106 MOV DPTR , #8500 90 Load the memory address to
DPTR 8107 85

8108 00

8109 MOVX @DPTR , A F0 store the lower byte result

810 A INC DPTR A3 Increment DPTR

810 B MOV A,B F5 Move B to A register

810 C F0

810 D MOVX @DPTR , A F0 Store the higher byte result

810 E LOOP SJMP LOOP 80

Stop the program 810F FE

RESULT:

75

FLOW CHART:

Start

Move the input data –1 to A-register

Move the input data –2 to B-register

Load memory address to DTPR

Store the Quotient in memory

Store the reminder in memory

Stop

INPUT & OUTPUT TABULATION:

MEMORY

ADDRESS

INPUT

DATA

MEMORY

ADDRESS

OUTPUT

DATA

8101

8104

8500

8501

8101

8104

8500

8501

Divide A by B

Increment DPTR

76

Ex. No.: 10 B

Date : DIVISION OF TWO 8-BIT DATA

AIM:

To performs the 8-bit division using 8051 microcontroller

APPARATUS REQUIRED:

 8051 microcontroller kit

 OPcode sheet

ALGORITHM:

1. Start the program.

2. Initialize the starting pointer.

3. Move the input data 1 to accumulator

4. Move the input data 2 to the B-register

5. Divide the content of A by B

6. Load the memory address to DPTR and store the Quotient in memory.

7. Increment DPTR and move B to A.

8. Store the Reminder in memory.

9. Stop the program

DIVISION ON USING 8051 PROGRAM:

ADDRESS LABLE PREMONICS OPCODE COMMENTS

8100 START MOV A,#05 74 Move the input data 1
 to accumulator 8101 05

8102 MOV B, #03 75
Move the input data 2 to the

B- register
8103 FO

8104 03

8105 DIV A,B 84 Divide the content of A,B

8106 MOV DPTR,8150 90

Load the memory address to DPTR 8107 81

8108 50

8109 MOVX @DPTR , A FO Store the Quotient in memory

810A INC DPTR A3 Increment DPTR

810B MOV A , B E5
Move B to A register

810C F0

810D MOV X @DPTR , A F0 Store the reminder in memory

810E LOOP SJMP LOOP 80
Stop the program

810F FE

RESULT:

77

FLOW CHART:

Start

Load count to R0 register

Load numbers to be added in memory

NO
If carry

YES

Increment R1 Register

No

If carry

Yes

Store the Carry in Memory

Store the Sum (Result) in Memory

Stop

Add the two data (A &B) and move the result to B

register.

Increment DPTR (Memory Address) Register & Decrement R0 register

Increment the memory

78

Ex. No.: 11 A

Date : SUM OF THE ELEMENTS

AIM:

To perform the sum of the numbers by using 8051 microcontroller.

APPARATUS REQUIRED:

 8051 microcontroller kit

 OPcode sheet

ALGORITHM:

1. Start the program

2. Get the Count (Ro) & Input data in memory.

3. Add the two data and move the result to B register..

4. If Carry is present, increment R1Register, otherwise go to next step.

5. Increment DPTR register for next data.

6. Decrement the R0 register for count.

7. If Zero flag is not set go to step 3, otherwise go to next step.

8. Store the result in Memory

7. Stop the program

PROGRAM:

Address Label Pneumonic OPcode Comments

8100 MOV DPTR,#8200 90

Move Memory address to DPTR 8101 82

8102 00

8103 MOVX A, @DPTR E0 Move the first data to acc and then R0 for
count 8104 MOV R0,A F8

79

INPUT & OUTPUT TABULATION:

Memory

Address
Input data

Memory

address
Output data

8200
8500

8201

8202

8501
8203

8204

8205

80

8105 MOV B, #00 75

Clear B register 8106 F0

8107 00

8108 MOV R1, B A9
Move B register content to R1

8109 F0

810A INC DPTR A3 Increment Memory address

810B LOOP1 MOVX A,@DPTR E0 Move the data from memory to Acc.

810C ADD A,B 25
Add A & B registers contents.

810D F0

810E MOV B,A F5
Move the result from A to b register.

810F F0

8110 JNC LOOP 50
Jump no carry then LOOP label

8111 01

8112 INC R1 09 Increment R1 for carry

8113 LOOP INC DPTR A3 Increment Memory address

8114 DJNZ R0, LOOP1 D8 Decrement R0 (Count) value and if R0≠

0 then jump to LOOP1 label. 8115 F5

8116 MOV DPTP,#8500 90
Move the memory address to DPTR for
Result

8117 85

8118 00

8119 MOV A,R1 E9 Move R1 to A

811A MOVX @DPTR , A F0 Store the Carry in memory

811B INC DPTR A3 Increment DPTR

811C MOV A,B E5
Move B to A

811D F0

811E MOVX @DPTR , A F0 Store the Sum in memory

811F LOOP1 SJMP LOOP1 80
Stop the program

8120 FE

RESULT:

81

FLOW CHART:

Start

Get the lookup table data for

Set the count value in B-reg

NO

If count =0

YES

Out the data into Stepper motor port

Call the delay

Increment the look up table address

Decrement the count

82

Ex. No.: 11 B

Date : STEPPER MOTOR INTERFACE USING 8051

MICROCONTROLLER

AIM:

To run stepper a motor at desired speed in two directions using 8051

microcontroller.

APPARATUS REQUIRED:

 8051 Microcontroller kit

 OPcode sheet

 Stepper motor interface

THEORY:

A motor in which the rotor is able to assume only discrete stationery angular position is a

stepper motor. The rotary motion occurs in a stepwise manner from an equilibrium position to the

next. Stepper motor are widely used in (simple position control systems in the open closed loop

mode)a verity of application such as complete peripherals (printers, disk drive etc)and in the areas

of process control machine tools, medicine numerically controller machine robotics.

ALGORITHM:

1. Load the stepping sequence number

2. Then load the motor port addressing 8015 memory

3. Move stepping data into accumulator

4. Out the accumulator value in to the stepper motor

5. Call the delay

6. Increment the DPTR (memory address)

7. Repeat the processor for all stepping data

8. Jump to step 1and repeat all steps

PROGRAM:

Address Label Pneumonic OPcode Comments

8100 START MOV B, #04 75
Move total no of stepping data to B

register
8101 F0

8102 04

8103 MOV RO, #82 78

Move starting address of stepping

sentence to R0,R1

8104 82

8105 MOV R1, #00 79

8106 00

83

WAVE SCHEME (UNIPOLAR OPERATION)

ADDERSS ANTI CLOCKWISE CLOCKWISE

8200

08

02

8201 01 04

8202 04 01

8203 02 08

84

8107 MOV DPTR, #E0C0 90

Motor port address in DPTR 8108 E0

8109 C0

810A LOOP MOV DPH , RO 88

Save data R0,R1 in data
810B 83

810C MOV DPL , R1 89

810D 82

810E MOV A , @DPTR E0 Move stepping data to accumulator

810F INC DPTR A3 Increment DPTR

810O MOV R0 , DPH A8

Save data R0,R1 in DPTR
8111 83

8112 MOV R1 , DPL A9

8113 82

8114 MOV DPTR ,#E0C0 90

Motor port address in DPTR 8115 E0

8116 C0

8117 MOV X @DPTR , A F0 Move data in accumulator to DPTR

8118 CALL DELAY 12

Call delay routine 8119 81

811 A 21

811B DJNZ B , LOOP D5
Decrement B and jump to loop
(810A)if B#O

811C F0

811D EC

811E JMP START 02

Jump to start (8100) 811F 81

8120 00

8121 DELAY MOV R2 , #12 7A
MOV data to r register

8122 12

8123 DLY 1 MOV R3, #FF 7
Move data to register

8124 FF

8125 DLY 2 DJNZ R3,DLY2 DB Decrement R3,and to DY 218125 if

R3,#0 8126 FE

8127 DJNZ R2,DLY1 DA Decrement R AND jump to DLYLL
8123 Y R2#0 8128 FA

8129 RET 22 Return to main program

RESULT:

85

FLOW CHART:

Start

Initialize 8279

Set starting address of code in memory

Send write display with command

Send code data to display RAM

NO

If Count= 0

YES

SEVEN SEGMENT DISPLAY

For Example d c b a h g f e

0 1 1 0 1 0 0 0 -- 68H

Decrement count

86

Ex. No.: 12

Date : INTERFACING 8279 WITH 8085 MICROPROCESSOR

(ROLLING DISPLAY)

AIM:

To interface 8279 programmable keyboard display controller with 8085 microprocessor

and write and execute the assembly language program to roll the word to display.

APPARATUS REQUIRED:

 8085 microprocessor kit

 8279 keyboard display

 OPcode sheet

ALGORITHM:

1. Start the program by initializing memory pointer

2. Initialize 8279 keyboard display controller

3. Set mode and display in 8279 IC

4. Clear display in 8279 keyboard display controller

5. Write display & Read FIFO status

6. Write display RAM from location auto-increases of mode

7. Move data input from Memory to Accumulator

8. Send code data to display Ram and call delay subroutine

9. Decrement the counter and repeat the steps from 5 to 9 until the counter becomes zero.

10. Stop the program.

PROGRAM:

ADDRESS LABEL PNEUMONIC OPCODE COMMENT

8100 START LXI H, 8150 21

Set pointer to memory 8101 50

8102 81

8103 MVI D, 1C 16 Initialize counter in D
register 8104 1C

8105 MVI A,10 3E Set mode and Display in

8279 IC 8106 10

8107 OUT C2 D3
Clear the display

8108 C2

87

INPUT & OUTPUT TABULATION:

INPUT:

OUTPUT

8109 MVI A, CC 3E

810A CC

810B OUT C2 D3

810C C2

810D MVI A, 90 3E
Write display

810E 90

810F OUT C2 D3

8110 C2

8111 LOOP MOV A,M 7E

8112 OUT C0 D3

8113 C0

8114 CALL DELAY CD
Call delay Subroutine

8115 1F

INPUT

ADDRESS

INPUT DATA

8150
8151

8152

8153

8154

8155

8156

8157

8158

8159

815A

815B

815C

815D
815E

815F

88

8116 81

8117 INX H 23 Increment the memory pointer

8118 DCR D 15 Decrement counter

8119 JNZ LOOP C2 Jump if no zero to loop

811A 11

811B 81

811C JMP START C3 For Rolling the Display

811D 00

811E 81

811F DELAY MVI B, A0 06 Delay Subroutine

8120 A0

8121 LOOP1 MVI C,FF 0E

8122 FF

8123 LOOP2 DCR C 0D

8124 JNZ LOOP2 C2

8125 23

8126 81

8127 DCR B 05

8128 JNZ LOOP1 C2

8129 21

812A 81

812B RET C9

RESULT:

89

FLOW CHART:

Start

Load the Accumulator

Out the data from port

Load the data into HL

Move the data to Accumulator to memory

If Carry ≠0

If

B≠0

Stop

Out the data from port

Increment the H – register

Move the data from memory to B register

Decrement the C – register

Decrement the B – register

90

Ex. No.: 13

Date : TRAFFIC LIGHT CONTROL SYSTEM USING

8085 MICROPROCESSOR

AIM:

To perform the traffic light controlling using 8085 microprocessor.

APPARATUS REQUIRED:

 8085 microprocessor kit

 OPcode sheet

 Traffic light control interface board.

ALGORITHM:

1. Start the program

2. Move the data to accumulator

3. Output data from port

4. Load HL register pair with immediate data

5. Move the data content to C register

6. Move data from memory to A

7. Output data from part A

8. Increment the HL register pair & Move data from memory to A

9. Output data from port B and port C one by one

10. Move data from memory to B register

11. Call delay for some time and increment HL register

12. Decrements C registers if ZF is not set go to step 6 else repeat the whole process

13. Perform OR operation with A and D register

14. If ZF=0, call delay else decrement B register until ZF=1.

15. Stop the program

TRAFFIC LIGHT CONTROL SYSTEM THE TRAFFIC LIGHT CONTROLLER

WORKS IN FOLLOWING SEQUENCE:

 Provide green signal for road 1, green signal for pedestrian on road 4, red signal for other

roads and other pedestrian 6secs

 Put Yellow signal for road 1, and maintain other signals in the previous state for 3 sacs.

 Provide green signal for road 2, green signal for pedestrian on road 1, red signal for other

roads and other pedestrians for 6 sacs.

 Put yellow signal for road 2, and maintain other signals in the previous state for 3secs

 Provide green signal for road 3, green signal for pedestrian on road 2, red signal for other

roads and other pedestrians for 6secs.

91

ROAD 1:

Colour Indication Port lines

Bi colour (Red) Pedestrian stop PA0

Bi colour (green) Pedestrian Go PA1

Green 2 Go Right PA2

Red Stop PA3

Yellow Before stop PA4

Green 1 Go straight PA5

ROAD 2:

Colour Indication Port lines

Bi colour (Red) Pedestrian stop PA6

Bi colour (green) Pedestrian Go PA7

Green 2 Go Right PB0

Red Stop PB1

Yellow Before stop PB2

Green 1 Go straight PB3

ROAD 3:

Colour Indication Port lines

Bi colour (Red) Pedestrian stop PB4
Bi colour (green) Pedestrian Go PB5

Green 2 Go Right PB6

Red Stop PB7

Yellow Before stop PC0

Green 1 Go straight PC1

ROAD 4:

Colour Indication Port lines

Bi colour (Red) Pedestrian stop PC2
Bi colour (green) Pedestrian Go PC3

Green 2 Go Right PC4

Red Stop PC5

Yellow Before stop PC6

Green 1 Go straight PC7

92

 Put yellow signal for road 3, and maintain other signals in the previous state for 3 sacs

 Provide green signal for road 4, green signal for pedestrian on road 3, red signal for other

roads and other pedestrians for 6 sacs.

 Put yellow signal for road 4, and maintain other signals in the previous state for 3 sacs.

 Stop the process.

PROGRAM:

Address Label Mnemonics Opcode Comments

8100 MVI A, 80 3E Move immediate data to

accumulator 8101 80

8102 OUT PCNT D3
Out the data from port

8103 1B

8104 START LXI H,8150 21

Set pointer to the register pair 8105 50

8106 81

8107 MVI C,08 0E
Move immediate data to C - register

8108 08

8109 LOOP1 MOV A,M 7E
Move data from Memory

from accumulator

810A OUT PA D3
Out the data from port A

810B 18

810C INX H 23 Increment HL pair

810D MOV A,M 7E Move data from M to A

810E OUT PB D3
Out the data from port B

810F 19

8110 INX H 23 Increment Hl pair

8111 MOV B,M 46 Move content of M to B

8112 OUT PC D3
Out the data from port C

8113 19

8114 INX H 23 Increment Hl Pair

8115 MOV B,M 46 Move the content M to B

93

For 6 seconds

Green signal on Road 1

Green signal for pedestrian stop on Road 4

Red signal for other Road

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0
Hoax decimal

value
0 1 1 0 0 1 0 1 65 (PA)

1 0 0 1 0 0 1 0 92(PB)

0 0 1 0 1 0 0 0 28(PC)

0 0 0 0 0 1 1 0 06 (time delay)

INPUT DATA

MEMORY

ADDRESS

INPUT

DATA

8150 65

8151 92

8152 28

8153 06

8154 51

8155 92

8159 28

815A 03

815B 4A

815C 99

815D 24

815E 06

815F 4A

8160 94

8161 24

8162 03

MEMORY

ADDRESS

INPUT

DATA

8163 89

8164 52

8165 26

8166 06

8167 89

8168 12

8169 25

816A 03

816B 49

816C A2

816D 94

816E 06

8170 46

8171 A2

8172 44

8173 03

94

8116 CALL DELAY CD

Call the delay Label 8117 21

8118 81

8119 INX H 23 Increment HL pair

811A DCR C OD Decrement C register

811B JNZ LOOP1 C2

Go to Loop 1 if no zero 811C 09

811D 81

811E JMP START C3

Jump to start 811F 04

8120 81

8121 DELAY LXI D,FFFF 11 Delay Program
Load Immediate memory content in
to D register

8122 FF

8123 FF

8124 DLY DCX D 1B Decrement DE register

8125 MOV A,E 7B Move content of E to A

8126 ORA B B2

8127 JNZ DLY C2

Jump on no zero to (Delay) DLY 8128 24

8129 81

812A DCR B 05 Decrement D register

812B JNZ DELAY C2

Jump on no zero to Delay 812C 21

812D 81

812E RET C9 Return to Main program

101

RESULT:

102

103

FLOW CHART:

START

Get the first input from look-up table

Set counter in C register

NO

If B#0

YES

STOP

Out the data into the DAC port

Increment the count

Decrement the count value

Jump Start

104

Ex. No.: 14 INTERFACING OF D TO A CONVERTER USING 8085 MICROPROCESSOR

Date :

AIM:

To generator triangular wave at DAC output using 8085 microprocessor.

APPARATUS REQUIRED:

 8085 microprocessor kit

 Opcode sheet

 DAC interface board.

ALGONTHM:

1. Start the program

2. Get the Fust input from lookup table

3. Set the count in c-register

4. Out the data in to the DAC port

5. Increment the look-up table address

6. Increment the count value

7. If carry is equal to zero go to jump start

8. If no carry is go to Out data

9. Stop program

PROGRAM:

ADDRESS LABLE PNEMONICS OPCODE COMMENTS

8100 START LXI H, 8110 21

Load the memory address for

input data
8101 10

8102 81

8103 MVI C , 41 0E
Move 41 to C register

8104 41

8105 LOOP MOV A , M 7E Move the data from M to A

8106 OUT C0 D3
Out the data from port.

8107 C0

8108 INX H 23 Increment memory pointer

105

DAC 0800 is an 8-bit DAC and the output voltage varies in between -5v and +5v. The

output voltage varies in steps of 10/256 =0.04 (approx) the digital data inputs and the

corresponding output voltage are presented in the following table.

Input data in
Hex

Output voltage
(V)

00 0.00
01 0.04

02 0.08

. .

. .

. .

7F 2.15

. .

. .

. .

FD 4.92

FE 4.96

FE 5.00

Model Graph:

V TABULATION:

 t (ms)

OUTPUT:

Amplitude Time period

106

8109 DCR C OP Decrement C register.

810A JNZ LOOP C2

Jump On no Zero to LOOP 810B 05

810C 81

810D JMP START C3

Jump to start 810E 00

810F 81

8110 LOOK-UP TABLE 00,08,10,18

Look Up data for generation
of Triangular Waveform.

8114 20,28,30,38

8118 40,48,50,58

811C 60,68,70,78

8120 80,88,90,98

8124 A0,A8,B0,B8

8128 C0,C8,D0,D8

812C E0,E8,F0,F8

8130 FF,F8,F0,E8

8134 E0,D8,D0,C8

8138 C0,B8,B0,A8

813C A0, 98, 90,88

8140 80,78,70,68

8144 60,58,50,48

8148 40,38,30,28

814C 20,18,10,08

8150 00

RESULT:

107

FLOWCHART:

Start

Stop

SEVEN SEGMENT DISPLAY

For Example d c b a h e g f

0 1 0 0 1 0 0 1 -- 49H

Store ADC in accumulator

OR Accumulator CIK No with ADC control

Store the data to accumulator

Loop in EDC sign of ADC

AND 01with Acc to check EDC

IF EDC is 01 continue checking

Shift right accumulator

108

Ex. No.: 15

Date : INTERFACING OF A TO D CONVERTER USING 8085

MICROPROCESSOR

AIM:

To write an assembly level language program to interface A to D converter using 8085

microprocessor.

APPARATUS REQUIRED:

 8085 microprocessor kit

 OPcode sheet

 ADC interface.

THEORY:

The A/D Conversion is a quantizing process whereby an analog signal is represented by

equivalent binary states. This is opposite to b/a conversion process. Analog – to- digital converters

can be classified in two general group based on the conversion technique. One technique involves

comparing a given analog signal with the internally generated equivalent signal. This group

includes successive approximation, counter and flash hypes converters. The second technique

involves changing an analog into or frequency and comparing these new parameters against known

values this group includes integrator converters and voltage to frequency converters the tradeoff

between the two techniques is based on accuracy Vs speed. The successive approximation and the

flash hope are faster but generally lees accurate than the in territory and the voltage to frequency

hype converters.

ALGORITHM:

1. Start the program

2. Set the ADC control ward to accumulator

3. Load the input value in the accumulator

4. Out the data from ADC port

5. The output are taken in digital form

6. Store the result

7. Stop the program.

109

INPUT & OUTPUT TABULATION:

Memory
Address

Data

7 segment

display

d

c

b

a

h

e

g

f

Hex
Value
(i/p

data)

8200

0

0

0

0

0

1

0

1

0

0A

8201

1

1

0

0

1

1

1

1

1

9F

8202

2

0

1

0

0

1

0

0

1

49

8203

3

0D

8204

4

9C

8205

5

2C

8206

6

28

8207

7

8F

110

PROGRAM

Address Label Mnemonics OPcode Comments

8100 START MVI A,00 3E
Store the ADC channel no to Acc.

8101 00

8102 OUT C8 D3 Output the control word to ADC control
reg. 8103 C8

8104 ORI 08 F6 Logically OR with A and ALE signal
through 08. 8105 08

8106 OUT 08 D3 Output the control word to ADC control
reg. 8107 C8

8108 NOP 00

Wait for few nano sec. 8109 NOP 00

810A NOP 00

810B ANI F7 E6 Logically AND with A and Reset ALE
signal through F7. 810C F7

810D OUT C8 D3
Output the control word to ADC

810E C8

810F NOP 00

Wait for few nano sec. 810O NOP 00

8111 NOP 00

8112 MVI A,10 3E
Move control word 10 to accumulator

8113 10

8114 OUT C8 D3
Output the control word to ADC

8115 C8

8116 NOP 00

Wait for few nano sec. 8117 NOP 00

8118 NOP 00

8119 MVI A,20 3E
Move control word 20 to accumulator

811 A 20

811B OUT C8 D3
Output the control word to ADC

811C C8

811D LOOP IN C0 DB
Input the EOC signal from ADC

811E C0

811F ANI 01 E6 Logically AND with 01 and A, to check
EOC signal. 8120 01

8121 JNZ LOOP C2

Jump on no zero to loop 8122 ID

8123 81

8124 IN C4 DB
Input the digital signal from ADC

8125 C4

8126 MOV B,A 47 Move data from A to B

111

Memory
Address

Data

7 segment
display

d

c

b

a

h

e

g

f

Hex
Value

(i/p data)

8208

8

08

8209

9

8C

820A

A

88

820B

B

38

820C

C

6A

820D

D

19

820E

E

68

820F

F

E8

112

8127 LXI H, 8200 21
Load the starting address of the lookup

table
8128 00

8129 82

812A MVI A,94 3E
Move control word 94 to accumulator

812B 94

812C OUT 01 D3
Output the control word to ADC

812D 01

812E MOV A , B 78 Move data from B to A

812F ANI OF E6 Logically AND with 0F and A, to get MSD

of the digital output. 8130 0F

8131 RLC 07

Rotate left through Carry
8132 RLC 07

8133 RLC 07

8134 RLC 07

8135 MOV L , A 0F Move data from A to L

8136 MOV A,M 7E Move data from M to A

8137 OUT 00 D3
Output the 1st data to ADC

8138 00

8139 MOV A , B 78 Move data from B to A

813A ANI OF E6 Logically AND with 0F and A, to get LSD

of the digital output. 813B 0F

813C MOV L , A 6F Move data from A to L

813D 7E Move data from M to A

813E OUT 00 D3
Output the 2nd data to ADC

813F 00

8140 JMP START C3

Jump to start label. 8141 00

8142 81

8143 HLT 76 Stop the program

RESULT:

113

Ex. No.: 16 SERIAL PORT INTERFACE USING 8085 MICROPROCESSOR

Date :

AIM:

To write a program to transmit the data 55 using serial port Interface 8251

APPARATUS REQUIRED:

 8085 micro processor kit

 Opcode sheet

 Serial port Interface

ALGORITHM

1) Initialize Timer for 9600 baud rate

2) OUT the data 00 into the USART Port

3) Initialize 8251

4) Transmit the data in to USART Port

5) Receive the same data through USART port

6) Stop the program

PROGRAM:

Address Label Pneumonic OPcode Comments

 ORG 8100H C3

TIMER CONT EQU C3H 00

 C0

 EQU C0 00
CHANNAL 0

 C5

 EQU C5 00
USART CONT

 C4

 EQU C4 00
USART DATA

 3E

8100 MVI A , 36 36
Move control word 36 to A – Register

8101 D3

8102 OUT TIMER CONT C6
Output the control word to 8251 SPI

8103 3E

8104 MVI A ,0A 0A
Move data 0A to ACC.

8105 D3

8106 OUT CHANNAL 0 C0
Output the control word to 8251 SPI

8107

8108 MVI A , 00 3E
Clear the Accumulator

8109 00

810A OUT CHANNEL 0 D3
Output the control word to 8251 SPI

810B C0

810C MVI A , 00 3E
Clear the Accumulator

810D 00

810E OUT USARTCONT D3
Output the control word to 8251 SPI

810F CA

8110 OUT USARTCONT D3
Output the control word to 8251 SPI

8111 CA

8112 OUT USARTCONT D3
Output the control word to 8251 SPI

8113 CA

8114 MVI A , 40 3E
Move data 04 to accumulator

8115 40

8116 OUT USARTCONT D3
Output the control word to 8251 SPI

8117 CA

8118 MVI A , 4E 3E
Move data 4 E to Accumulator

8119 4E

811A OUT USARTCONT D3
Output the control word to 8251 SPI

811B CA

811C MVI A , 37 3E
Move data 37 to Accumulator

811D 37

811E OUT USARTCONT D3
Output the control word to 8251 SPI

811F CA

8120 TXDNRDY IN USARTCONT DB
Input the USARTCONT to SPI

8121 CA

8122 ANI 04 E6
Logical AND with Acc and 04

8123 04

8124 JZ TXDNRDY CA

Jump on zero to TXDNRDY label 8125 20

8126 81

8127 MVI A , 55 3E
Move data 55 to Accumulator

8128 55

8129 OUT USARTDATA D3
Output the control word to 8251 SPI

812A C8

812B RXNRDY IN USARTCONT DB Input the USARTCONT to SPI

112

812C CA

812D ANI 02 E6
Logical AND with Acc and 02

812E 02

812F JZ RXNRDY CA

Jump on zero to RXNRDY label 8130 2B

8131 81

8132 IN USARTCONT DB
Input the USARTCONT to SPI

8133 C8

8134 STA 8500 32

Store the data in 8500 8135 00

8136 85

8137 HLT 76 Stop the Program.

INPUT & OUTPUT TABULATION:

RESULT:

Memory

Address

Input data Memory

Address

Output

data

8128

8500

114

N

FLOW CHART:

START

Clear accumulator

Move port address to

 If A#0

NO

YES

MODEL GRAPH: TABULATION:

V
Amplitude Time period

t(ms)

OUTPUT:

Jump Start

Output to DAC port

Increment A

115

Ex. No.: 17 INTERFACING D TO A CONVERTER USING 8051 MICROCONTROLLER

Date :

AIM:

To generate saw both wave at digital to analog converter output.

Apparatus Required:

 8051 microcontroller

 OPcode sheet

 DAC Interface Board

ALGORITHM:

1. Start the program

2. Clear accumulator

3. Move the port address to DPTR

4. Output to DAC port

5. Increment the accumulator

6. If A is not Zero go to step 4

7. Long jump to Step 1.

PROGRAM:

Address Label Mnemonics Opcode Comments

8100 START MOVA,#00 74
Move 00 to accumulator

8101 00

8102 MOV DPTR, # E0C0 90

DAC1, address in port 8102 E0

8104 C0

8105 LOOP MOVX @DPDR , A F0 Output to data port

8106 INC A 04 Increment A

8107 JNZ LOOP 70
If A is not zero go to l

8108 FC

8109 LJMP START 02

Go to start 810A 81

810B 00

RESULT:

116

Ex. No.: 1818

Date:

AIM:

INTERFACING A TO D CONVERTER USING 8051

To generate saw tooth wave at analog to digital converter output.

Apparatus Required:

 8051 microcontroller

 OPcode sheet

 ADC Interface Board

PROGRAM:

Address Label Mnemonics Opcode Comments

8100 START MOV A,#00 74,00 ADC select channel

8102 MOV DPTR, #E0C8 90 ,E0,C8 ADC Control port address

8105 MOVX @DPTR,A F0
Out ADC Channel no to ADC
control port

8106 NOP 00

8107 NOP 00

8108 NOP 00

8109 MOV A,#08 74, 08 Send ALE to ADC

PORT

810B MOVX @DPTR,A F0

810C NOP 00

810D NOP 00

810E NOP 00

810F MOV A,#10 74,10 Start of conversion

8111 MOVX @DPTR, A F0

8112 NOP 00

8113 NOP 00

8114 NOP 00

8115 MOV A,#10 74,20 Output enable

8117 MOVX @DPTR,A F0

8118 NOP 00

8119 NOP 00

811A NOP 00

117

811B MOV DPTR,#E0 C0 90, E0, C0 EOC port address

811E MOVX A,@DPTR E0 Get end of the conversion

811F ANL A,#01 54,01

8121 JZ 811E 60,FB If low get EOC again

8123 MOV DPTR, #E0C4 90,E0,C4 Data port address

8126 MOVX A,@DPTR E0

8127 MOV DPTR,#8500 90,8500 Store data

812A MOVX @DPTR,A F0

812B LIMP 8100 02, 812B

RESULT:

118

Ex. No.: 19 INTERFACING OF DC MOTOR USING 8051 MICROCONTROLLER

Date :

AIM:

To control the speed of a DC motor using 8253.

ALGORITHM:

 Initialize 8253 counter 0 in mode 3 (Square wave generator). It gives

frequency input to FTOV converter for the desired speed.

 Load counter 0 with count proportional to the speedrequired.

 Give input frequency for the speed required at 8200H inhex.

PROGRAM:

ADDR OPCODES MNEMONICS COMMENTS

;To give frequency input to FTOV convertor

8100 74 36 MOV A, #36H ; 8253 counter 0 in mode 3
; square wave generator

8102 90 E0 0B MOV DPTR,#E00B

8105 F0 MOVX@DPTR,A

;To load the count in 8253 counter 0

8106 90 82 00 MOV DPTR, #8200H ;Read LSB count
; from 8200H

8109 E0 MOVX A, @DPTR

810A 90 E0 08 MOV DPTR, #E008H ;counter 0 addr.

810D F0 MOVX @DPTR, A ;Output MSB count

810E 90 82 01 MOV DPTR, #8201H ;Read MSB count from
8201H

8111 E0 MOV A, @DPTR

8112 90 E0 08 MOV DPTR, #E008H ;counter 0 addr.

8115 F0 MOVX @DPTR, A ;output MSB count

8116 80 FE SJMP HERE

119

Verification:

Refer the verification procedure in 8085 programming enclosed at the

previous section.

LOOKUP TABLE

INPUT SPEED (RPM)

FFFF 100

FC54 150

F8A9 200

F4FE 250

F153 300

EDA8 350

E9FD 400

E652 450

E2A7 500

DEFC 550

DB51 600

D7A6 650

D3FB 700

D050 750

CCA5 800

C8FA 850

C54F 900

C1A4 950

BDF9 1000

120

BA4F 1050

B6A3 1100

B2F8 1150

AF4D 1200

ABA2 1250

A7F7 1300

A44C 1350

A0A1 1400

9CF6 1450

994B 1500

95A0 1550

91F5 1600

8E4A 1650

8A9F 1700

86F4 1750

8349 1800

7F9E 1850

7BF3 1900

7848 1950

749D 2000

70F2 2050

6D47 2100

699C 2150

65F1 2200

6246 2250

5E9B 2300

121

5AF0 2350

5745 2400

539A 2450

4FEF 2500

RESULT:

122

Ex. No.: 20 INTERFACING OF AC MOTOR USING 8051 MICROCONTROLLER

Date :

AIM:

To Control the speed of AC motor by controlling the firing pulses.

Requirement:

 AC motor Speed Controller interface Board

 Ac motor

 MP/MC trainer kit

 26 pin interface cable

Procedure:

 Interface the MP/MC kit with AC Motor speed controller board using 26 pin

FRC cable provided.

 Switch ON the Trainer

 Type the Program given below in the memory location with the starting

address 8100H.

 Execute the following program and observe that the output voltage at

DAC1.Change the value in A and observe the corresponding output voltage

at DAC1. Give Digital input for the speed required at 8107H inhex.

123

PROGRAM:

 ORG8100H

ADDR OPCODE LABEL MNEMONICS COMMENTS

8100 74 80 MOV A, #80H

8102

90 E0 1B

MOV

DPTR,#E01BH

8105 F0 74 7F MOV A, #7FH ;Move ‘7F’ to acc

8108

90 E0 18

MOV DPTR,#E018H

;DAC1 address in

DPTR

810B F0 MOVX @DPTR,A ;Output to DAC1

810C 80 FE HERE: SJMP HERE ;Jump here itself

MODEL GRAPH:

MOTOR SPEED

(RPM)

7000

-

-

-

0 1 2 3 4 5

OUTPIJT VOLTAGE (V)

126

DATA TABLE:

INPUT DATA

IN HEX

OUTPUT

VOLTAGE (V)

MOTOR

SPEED (RPM)

00 0.00 20000

01 0.04 -

02 0.08 -

. . .

. . .

7F 2.50 -

. . .

. . .

FE 4.96 -

FF 5.00 0

RESULT:

	INDEX
	AIM:
	APPARATUS REQUIRED:
	AND GATE:
	OR GATE:
	NOT GATE:
	AND GATE: (1)
	NOR GATE:
	X- OR GATE:
	PROCEDURE:
	AND GATE
	OR GATE
	SYMBOL PIN DIAGRAM
	SYMBOL PIN DIAGRAM (1)
	SYMBOL PIN DIAGRAM (2)
	NOR GATE
	APPARATUS REQUIRED: (1)
	THEORY:
	2. Associative Law
	3. Distributive Law
	4. Absorption Law
	5. Involution (or) Double complement Law
	6. Idempotent Law
	7. Complementary Law
	8. De Morgan’s Theorem
	Demorgan’s Theorem
	We will also use the following set of postulates:

	PROCEDURE:
	RESULT:

	EX. NO.: 3 CODE CONVERTOR DATE:
	APPARATUS REQUIRED:
	BINARY TO GRAY CODE CONVERTOR

	K-Map for G3
	K-Map for G2
	K-Map for G0
	LOGIC DIAGRAM:
	TRUTH TABLE:

	K-Map for B3:
	B3=G3
	K-Map for B0:
	EXCESS-3 TO BCD CONVERTOR TRUTH TABLE:
	LOGIC DIAGRAM:
	K-Map for A:
	K-Map for B:
	K-Map for D:
	PROCEDURE:
	RESULT:

	DATE:
	APPARATUS REQUIRED: (1)
	HALF ADDER:
	FULL ADDER:
	HALF SUBTRACTOR:
	FULL SUBTRACTOR:
	HALF ADDER

	LOGIC DIAGRAM:
	FULL ADDER
	K-Map for SUM
	SUM = A’B’C + A’BC’ + ABC’ + ABC
	CARRY = AB + BC + AC
	FULL ADDER USING TWO HALF ADDER
	TRUTH TABLE:
	DIFFERENCE = A’B + AB’
	BORROW = A’B
	FULL SUBTRACTOR
	K-Map for Difference
	Difference = A’B’C + A’BC’ + AB’C’ + ABC K-Map for Borrow
	FULL SUBTRACTOR USING TWO HALF SUBTRACTOR
	PROCEEDURE:
	RESULT:
	PIN DIAGRAM FOR IC 7483:
	LOGIC DIAGRAM:
	LOGIC DIAGRAM: (1)
	LOGIC DIAGRAM: (2)
	PROCEDURE:
	RESULT: (1)
	ODD PARITY GENERATOR
	ODD PARITY GENERATOR (1)
	ODD PARITY CHECKER
	ODD PARITY CHECKER (1)
	PROCEDURE: (1)
	PIN DIAGRAM FOR IC 74180:
	16 BIT ODD/EVEN PARITY GENERATOR

	EX. NO.: 7 DATE:
	AIM:
	APPARATUS REQUIRED: (2)
	ENCODER:
	DECODER:
	PROCEDURE:
	BCD TO DECIMAL DECODER:
	PIN DIAGRAM FOR IC 74147(Encoder)
	TRUTH TABLE: (1)
	TRUTH TABLE: (2)
	CONSTRUCTION AND VERIFICATION OF 4 BIT RIPPLE COUNTER AND MOD 10/MOD 12 RIPPLE COUNTER
	AIM:
	APPARATUS REQUIRED:
	PROCEDURE:
	PIN DIAGRAM FOR IC 7476:
	TRUTH TABLE:
	LOGIC DIAGRAM:
	LOGIC DIAGRAM: (1)
	4:1 MULTIPLEXER
	FUNCTION TABLE:
	CIRCUIT DIAGRAM FOR MULTIPLEXER:
	BLOCK DIAGRAM FOR 1:4 DEMULTIPLEXER:
	Y=XS1’S0’+XS1’S0+XS1S0’+XS1S0
	LOGIC DIAGRAM FOR DEMULTIPLEXER:
	PIN DIAGRAM FOR IC 74154:
	RESULT:

	DATE: (1)
	AIM:
	APPARATUS REQUIRED:
	PIN DIAGRAM OF IC 7474:
	LOGIC DIAGRAM:
	SERIAL IN PARALLEL
	TRUTH TABLE:
	LOGIC DIAGRAM: (1)
	PARALLEL IN PARALLEL OUT
	TRUTH TABLE: (1)
	RESULT:

	DATE: (2)
	AIM:
	APPARATUS REQUIRED:
	PIN DIAGRAM FOR IC 7476:

	TRUTH TABLE: (3)
	PIN DIAGRAM:
	LOGIC DIAGRAM:
	PROCEDURE:
	RESULT:

	IC741-GeneralDescription:
	Pin Configuration:
	Features:
	SPECIFICATIONS:
	APPLICATIONS:-
	PROCEDURE:
	PROCEDURE:DIFFERENTIATOR

	INTEGRATOR CIRCUITDIAGRAM:-
	DIFFERENTIATOR:-CIRCUITDIAGRAM:
	(ii)FORSINEWAVEINPUT
	TABULATION:
	RESULT:
	AIM:
	APPARATUS REQUIRED:
	INVERTING AMPLIFIER:
	NON - INVERTING AMPLIFIER:
	THEORY:
	NON- INVERTING AMPLIFIER:
	DIFFERENTIAL AMPLIFIER:

	CIRCUIT DIAGRAM:
	INVERTING AMPLIFIER
	NON INVERTING AMPLIFIER

	PROCEDURE:
	MODEL GRAPH:
	INVERTING AMPLIFIER

	RESULT: (1)
	AIM:
	APPARATUS:
	CIRCUIT DIAGRAM:
	Subtractor:
	THEORY: ADDER:

	SUBTRACTOR:
	COMPARATOR:
	OBSERVATIONS: ADDER:
	COMPARATOR:

	ADDER:
	SUBTRACTOR: (1)
	COMPARATOR: (1)
	PRECAUTIONS:
	RESULT: (2)
	APPARATUS REQUIRED:
	DESIGN:
	• For Symmetrical Wave form :
	CIRCUIT DIAGRAM: Unsymmetrical: Symmetrical:
	PIN DIAGRAM FOR IC555

	PROCEDURE:
	TABULATION:
	Unsymmetrical: Duty Cycle = 25%
	RESULT:
	AIM:
	APPARATUS REQUIRED: (1)
	DESIGN: (1)
	CIRCUIT DIAGRAM:
	TABULATION: (1)
	RESULT: (1)
	THEORY:
	DESIGN: a. PLL Circuit

	CIRCUIT DIAGRAM: (1)
	b. Frequency Multiplier
	RESULT:
	APPARATUS REQUIRED:
	DESIGN:
	b) REGULATOR USING LM723
	PROCEDURE:
	CIRCUIT DIAGRAM:
	REGULATOR USING LM 723:

	FLOW CHART:
	INPUT & OUTPUT TABULATION:
	Date : ADDITION OF TWO 8-BIT DATA WITHOUT CARRY AIM:
	APPARATUS REQUIRED:
	ALGORITHM:
	PROGRAM:
	FLOWCHART:
	Ex. No.: 1 B
	APPARATUS REQUIRED: (1)
	ALGORITHM: (1)
	PROGRAM: (1)
	RESULT:
	INPUT & OUTPUT TABULATION: (1)
	RESULT: (1)
	Ex. No.: 2 B
	APPARATUS REQUIRED: (2)
	ALGORITHM: (2)
	PROGRAM: (2)
	RESULT: (2)
	Ex. No.: 3 A
	APPARATUS REQUIRED: (3)
	ALGORITHM: (3)
	PROGRAM: (3)
	RESULT: (3)
	Ex. No.: 3 B
	APPARATUS REQUIRED: (4)
	ALGORITHM: (4)
	PROGRAM: (4)
	RESULT: (4)
	Yes
	YES
	Ex. No.: 4 A
	APPARATUS REQUIRED: (5)
	ALGORITHM: (5)
	PROGRAM: (5)
	RESULT: (5)
	Ex. No.: 4 B
	APPARATUS REQUIRED: (6)
	ALGORITHM: (6)
	PROGRAM: (6)
	RESULT: (6)
	NO
	NO (1)
	Ex. No.: 5 A
	APPARATUS REQUIRED: (7)
	ALGORITHM: (7)
	PROGRAM: (7)
	RESULT: (7)
	Ex. No.: 5 B
	APPARATUS REQUIRED: (8)
	ALGORITHM: (8)
	PROGRAM: (8)
	RESULT: (8)
	YES (1)
	NO (2)
	YES (2)
	NO (3)
	Ex. No.: 6 A
	APPARATUS REQUIRED: (9)
	ALGORITHM: (9)
	PROGRAM: (9)
	RESULT: (9)
	YES (3)
	NO (4)
	YES (4)
	NO (5)
	Ex. No.: 6 B
	APPARATUS REQUIRED: (10)
	ALGORITHM: (10)
	PROGRAM: (10)
	RESULT: (10)
	Ex. No.: 7 A
	APPARATUS REQUIRED: (11)
	ALGORITHM: (11)
	PROGRAM: (11)
	INPUT & OUTPUT TABULATION: (2)
	FLOW CHART
	YES (5)
	Ex. No.: 7 B
	APPARATUS REQUIRED: (12)
	ALGORITHM: (12)
	PROGRAM: (12)
	INPUT & OUTPUT TABULATION: (3)
	FLOW CHART: (1)
	Ex. No.: 8 A
	APPARATUS REQUIRED: (13)
	ALGORITHM: (13)
	PROGRAM: (13)
	RESULT: (11)
	Ex. No.: 8 B
	APPARATUS REQUIRED: (14)
	ALGORITHM: (14)
	PROGRAM: (14)
	RESULT: (12)
	Ex. No.: 9 A
	APPARATUS REQUIRED: (15)
	ALGORITHM: (15)
	PROGRAM: (15)
	RESULT: (13)
	INPUT & OUTPUT TABULATION: (4)
	Date : SUBTRACTION OF TWO 8-BIT DATA AIM:
	APPARATUS REQUIRED: (16)
	ALGORITHM: (16)
	PROGRAM: (16)
	FLOW CHART: (2)
	INPUT& OUTPUT TABULATION:
	Date : MULTIPLICATION OF TWO 8-BIT DATA
	APPARATUS REQUIRED: (17)
	ALGORITHM: (17)
	PROGRAM: (17)
	FLOW CHART: (3)
	INPUT & OUTPUT TABULATION: (5)
	Date : DIVISION OF TWO 8-BIT DATA
	APPARATUS REQUIRED: (18)
	ALGORITHM: (18)
	DIVISION ON USING 8051 PROGRAM:
	FLOW CHART: (4)
	Ex. No.: 11 A
	APPARATUS REQUIRED: (19)
	ALGORITHM: (19)
	PROGRAM: (18)
	RESULT: (14)
	Ex. No.: 11 B
	AIM:
	APPARATUS REQUIRED: (20)
	THEORY:
	ALGORITHM: (20)
	PROGRAM: (19)
	RESULT: (15)
	SEVEN SEGMENT DISPLAY
	0 1 1 0 1 0 0 0 -- 68H
	Date : INTERFACING 8279 WITH 8085 MICROPROCESSOR
	AIM: (1)
	APPARATUS REQUIRED: (21)
	ALGORITHM: (21)
	PROGRAM: (20)
	OUTPUT
	FLOW CHART: (5)
	Ex. No.: 13
	AIM: (2)
	APPARATUS REQUIRED: (22)
	ALGORITHM: (22)
	TRAFFIC LIGHT CONTROL SYSTEM THE TRAFFIC LIGHT CONTROLLER WORKS IN FOLLOWING SEQUENCE:
	ROAD 1:
	ROAD 3:
	PROGRAM: (21)
	INPUT DATA
	FLOW CHART: (6)
	AIM: (3)
	APPARATUS REQUIRED: (23)
	ALGONTHM:
	PROGRAM: (22)
	Model Graph:
	t (ms)
	RESULT: (16)
	SEVEN SEGMENT DISPLAY (1)
	0 1 0 0 1 0 0 1 -- 49H
	Date : INTERFACING OF A TO D CONVERTER USING 8085
	AIM: (4)
	APPARATUS REQUIRED: (24)
	THEORY: (1)
	ALGORITHM: (23)
	INPUT & OUTPUT TABULATION: (6)
	RESULT: (17)
	Date :
	APPARATUS REQUIRED: (25)
	ALGORITHM
	PROGRAM: (23)
	NO (6)
	MODEL GRAPH: TABULATION:
	OUTPUT:
	Date : (1)
	Apparatus Required:
	ALGORITHM: (24)
	PROGRAM: (24)
	Ex. No.: 1818
	INTERFACING A TO D CONVERTER USING 8051
	Apparatus Required: (1)
	PROGRAM: (25)
	Ex. No.: 19 INTERFACING OF DC MOTOR USING 8051 MICROCONTROLLER
	AIM: (5)
	ALGORITHM: (25)
	PROGRAM: (26)
	LOOKUP TABLE
	Ex. No.: 20 INTERFACING OF AC MOTOR USING 8051 MICROCONTROLLER
	AIM: (6)
	Requirement:
	Procedure:
	PROGRAM: (27)
	-
	- (1)
	DATA TABLE:

